
Optimized Compilation of Multiset Rewriting with
Comprehensions ?

Edmund S. L. Lam and Iliano Cervesato

Carnegie Mellon University
sllam@qatar.cmu.edu and iliano@cmu.edu

Abstract. We extend the rule-based, multiset rewriting language CHR with mul-
tiset comprehension patterns. Multiset comprehension provides the programmer
with the ability to write multiset rewriting rules that can match a variable num-
ber of entities in the state. This enables implementing algorithms that coordinate
large amounts of data or require aggregate operations in a declarative way, and
results in code that is more concise and readable than with pure CHR. We call
this extension CHRcp . In this paper, we formalize the operational semantics of
CHRcp and define a low-level optimizing compilation scheme based on join or-
dering for the efficient execution of programs. We provide preliminary empirical
results that demonstrate the scalability and effectiveness of this approach.

1 Introduction

CHR is a declarative logic constraint programming language based on pure forward-
chaining and committed choice multiset rewriting. This provides the user with a highly
expressive programming model to implement complex programs in a concise and declar-
ative manner. Yet, programming in a pure forward-chaining model is not without its
shortfalls. Expressive as it is, when faced with algorithms that operate over a dynamic
number of constraints (e.g., finding the minimum value satisfying a property or finding
all constraints in the store matching a particular pattern), a programmer is forced to
decompose his/her code over several rules, as a CHR rule can only match a fixed num-
ber of constraints. Such an approach is tedious, error-prone and leads to repeated in-
stances of boilerplate code, suggesting the opportunity for a higher form of abstraction.
This paper develops an extension of CHR with multiset comprehension patterns [11,2].
These patterns allow the programmer to write multiset rewriting rules that can match
dynamically-sized constraint sets in the store. They enable writing more readable, con-
cise and declarative programs that coordinate large amounts of data or use aggregate
operations. We call this extension CHRcp .

In previous work [7], we presented an abstract semantics for CHRcp and con-
cretized it into an operational semantics. This paper defines a compilation scheme for
CHRcp rules that enables an optimized execution for this operational semantics. This
compilation scheme, based on join ordering [4,6], determines an optimized sequence
of operations to carry out the matching of constraints and guards. This ordering is op-
timized in that it utilizes the most effective supported indexing methodologies (e.g.,
? This paper was made possible by grant NPRP 09-667-1-100, Effective Programming for Large

Distributed Ensembles, from the Qatar National Research Fund (a member of the Qatar Foun-
dation). The statements made herein are solely the responsibility of the authors.

hash map indexing, binary tree search) for each constraint pattern and schedules guard
condition eagerly, thereby saving potentially large amounts of computation by pruning
unsatisfiable branches as early as possible. The key challenge of this approach is to de-
termine such an optimized ordering and to infer the set of lookup indices required to
execute the given CHRcp program with the best possible asymptotic time complexity.
Our work augments the approach from [6] to handle comprehension patterns, and we
provide a formal definition of this compilation scheme and an abstract machine that
implements the resulting compiled CHRcp programs.

Altogether, this paper makes the following contributions: We define a scheme that
compiles CHRcp rules into optimized join orderings. We formalize the corresponding
CHRcp abstract matching machine. We prove the soundness of this abstract machine
with respect to the operational semantics. We provide preliminary empirical results to
show that a practical implementation of CHRcp is possible.

The rest of the paper is organized as follows: Section 2 introduces CHRcp by exam-
ples and Section 3 gives its syntax. In Section 4, we describe an operational semantics
for CHRcp and define our compilation scheme in Section 5. Section 6 builds optimized
join orderings of CHRcp rules. Section 7 defines the abstract state machine and Sec-
tion 8 establishes correctness results. In Section 9 we present preliminary empirical
results. Section 10 situates CHRcp in the literature and Section 11 outlines directions
of future work.

2 A Motivating Example

In this section, we illustrate the benefits of comprehension patterns in multiset rewrit-
ing with an example. A comprehension pattern *p(~t) | g+~x∈t represents a multiset of
constraints that match the atomic constraint p(~t) and satisfy guard g under the bindings
of variables ~x that range over the elements of the comprehension domain t.

Consider the problem of two agents wanting to swap data that they each possess on
the basis of a pivot value P . We express an integer datum I belonging to agent X by
the constraint data(X , I). The state of this dynamic system is represented by a multiset
of ground constraints, the constraint store. Given agents X and Y and a value P , we
want all of X’s data with value I less than or equal to P to be transferred to Y and all
of Y ’s data J such that J is greater than or equal to P to be transferred to X . Notice
that the value P satisfies the conditions both for I and J . The following CHRcp rule
implements this swap procedure:

selSwap @
swap(X ,Y ,P)
*data(X , I) | I ≤ P+I∈Xs

*data(Y , J) | J ≥ P+J∈Ys

⇐⇒ *data(Y , I)+I∈Xs

*data(X , J)+J∈Ys

The swap is triggered by the constraint swap(X ,Y ,P) in the rule head on the left of
⇐⇒. All of X’s data I such that I ≤ P are identified by the comprehension pattern
*data(X , I) | I ≤ P+I∈Xs . Similarly, all Y ’s data J such that J ≥ P are identified by
*data(Y , J) | J ≥ P+J∈Ys . The instances of I and J matched by each comprehen-
sion pattern are accumulated in the comprehension domains Xs and Ys , respectively.
Finally, these collected bindings are used in the rule body on the right of⇐⇒ to com-
plete the rewriting by redistributing all of X’s selected data to Y and vice versa. The
CHRcp semantics enforces the property that each comprehension pattern captures a

2

maximal multiset of constraints in the store, thus guaranteeing that no data that is to be
swapped is left behind.

Comprehension patterns allow the programmer to easily write rules that manipulate
dynamic numbers of constraints. By contrast, consider how the above program would
be written in pure CHR (without comprehension patterns). To do this, we are forced to
explicitly implement the operation of collecting a multiset of data constraints over sev-
eral rules. We also need to introduce an accumulator to store bindings for the matched
facts as we retrieve them. A possible implementation of this nature is as follows:

init @ swap(X ,Y ,P) ⇐⇒ grab1 (X ,P ,Y , []), grab2 (Y ,P ,X , [])

gIter1 @ grab1 (X ,P ,Y , Is), data(X , I) ⇐⇒ I ≤ P | grab1 (X ,P ,Y , [I | Is])
gEnd1 @ grab1 (X ,P ,Y , Is) ⇐⇒ unrollData(Y , Is)
gIter2 @ grab2 (Y ,P ,X , Js), data(Y , J)⇐⇒ J ≥ P | grab2 (Y ,P ,X , [J | Js])
gEnd2 @ grab2 (Y ,P ,X , Js) ⇐⇒ unrollData(X , Js)

unrollIter @ unrollData(L, [D | Ds]) ⇐⇒ unrollData(L,Ds), data(L,D)
unrollEnd @ unrollData(L, []) ⇐⇒ true

In a CHR program with several subroutines of this nature, such boilerplate code
gets repeated over and over, making the program verbose. Furthermore, the use of list
accumulators and auxiliary constraints (e.g., grab1 , grab2 , unrollData) makes the code
less readable and more prone to errors. Most importantly, the swap operation as written
in CHRcp is atomic while the above CHR code involves many rewrites, which could
be interspersed by applications of other rules that operate on data constraints. Observe
also that this pure CHR implementation assumes a priority semantics [3]: rule gEnd1
is to be used only when rule gIter1 is not applicable, and similarly for rules gEnd2
and gIter2 . Rule priority guarantees that all eligible data constraints participate in the
swap. We may be tempted to implement the swap procedure as follows in standard
CHR:

swap1 @ swap(X ,Y , I), data(X , I) ⇐⇒ I ≤ P | swap(X ,Y , I), data(Y , I)

swap2 @ swap(X ,Y , J), data(Y , J)⇐⇒ J ≥ P | swap(X ,Y , J), data(X , J)

swap3 @ swap(X ,Y ,D) ⇐⇒ true

This, however, does not work in general. This is because the matching conditions of
swap1 and swap2 are potentially overlapping: if we have data(X ,P) in the constraint
store, applying swap1 to it will produce data(Y ,P), which will inevitably be reversed
by an application of swap2 , thereby locking the execution in a non-terminating cycle.
This code is however correct were the conditions on X’s and Y ’s values to be comple-
mentary (e.g., I < P and J ≥ P). But it is still non-atomic and relies on prioritization
as the last rule should be triggered only when neither of the first two is applicable.
By contrast, multiset comprehensions in CHRcp provides a high-level abstraction that
relinquishes all these technical concerns from the programmer’s hands.

3 Syntax and Notations

In this section, we define the abstract syntax of CHRcp and highlight the notations used
throughout this paper. We write ō for a multiset of syntactic objects o, with ∅ indicating
the empty multiset. We write *ō1, ō2+ for the union of multisets ō1 and ō2, omitting the
brackets when no ambiguity arises. The extension of multiset ō with syntactic object
o is similarly denoted *ō, o+. Multiset comprehension at the meta-level is denoted by

3

Variables: x Predicates: p Rule names: r Primitive terms: tα Occurrence index: i

Terms: t ::= tα | t̄ | *t | g+~x∈t
Guards: g ::= t = t | t ∈̇ t | t < t | t ≤ t | t > t | t ≥ t | g ∧ g

Atomic Constraints: A ::= p(~t)
Comprehensions: M ::= *A | g+~x∈t
Rule Constraints: C,B ::= A | M

Head Constraints: H ::= C : i
Rules: R ::= r @ H̄ ⇐⇒ g | B̄

Programs: P ::= R̄

Fig. 1. Abstract Syntax of CHRcp

*o | Φ(o)+, where o a meta object and Φ(o) is a logical statement on o. We write ~o for a
comma-separated tuple of o’s. A list of objects o is also denoted by ~o and given o, we
write [o | ~o] for the list with head o and tail ~o. The empty list is denoted by []. We
will explicitly disambiguate lists from tuples where necessary. Given a list ~o, we write
~o[i] for the ith element of ~o, with ~o[i] = ⊥ if i is not a valid index in ~o. We write
o ∈ ~o if ~o[i] 6= ⊥ for some i. The set of valid indices of the list ~o is denoted range(~o).
The concatenation of list ~o1 with ~o2 is denoted ~o1++~o2. We abbreviate a singleton list
containing o as [o]. Given a list ~o, we write *~o+ to denote the multiset containing all
(and only) the elements of ~o. The set of the free variables in a syntactic object o is
denoted FV (o). We write [~t/~x]o for the simultaneous replacement within object o of
all occurrences of variable xi in ~x with the corresponding term ti in ~t. When traversing
a binding construct (e.g., a comprehension pattern), substitution implicitly α-renames
variables to avoid capture. It will be convenient to assume that terms get normalized
during substitution. The composition of substitutions θ and φ is denoted θφ.

Figure 1 defines the abstract syntax of CHRcp . An atomic constraint p(~t) is a pred-
icate symbol p applied to a tuple ~t of terms. A comprehension pattern *A | g+~x∈t rep-
resents a multiset of constraints that match the atomic constraint A and satisfy guard g
under the bindings of variables ~x that range over t. We call ~x the binding variables and
t the comprehension domain. The variables ~x are locally bound with scopeA and g. We
implicitly α-rename binding variables to avoid capture. The development of CHRcp

is largely agnostic to the language of terms [7]. In this paper however, we assume for
simplicity that tα are arithmetic terms (e.g., 10, x+ 4). We also include tuples and mul-
tisets of such terms. Term-level multiset comprehension *t | g+x∈m filters multiset m
according to guard g and maps the result as specified by t.

A CHR head constraintC : i is a constraintC paired with an occurrence index i. As
in CHR, a CHRcp rule r@ H̄ ⇐⇒ g | B̄ specifies the rewriting of the head constraints
H̄ into the body B̄ under the conditions that guards g are satisfied; r is the name of the
rule.1 If the guard g is always satisfied (i.e., true), we drop that rule component entirely.
All free variables in a CHRcp rule are implicitly universally quantified at the head of
the rule. A CHR program is a set of CHR rules and we require that each head constraint
has a unique occurrence index i. For simplicity, we assume that a rule body is grounded
by the head constraints and that guards do not appear in the rule body.

1 CHR rules traditionally have a fourth component, the propagation head, which we omit in the
interest of space as it does not fundamentally impact the compilation process or our abstract
machine. See [7] for a treatment of comprehension patterns in propagation heads.

4

Matching: C̄ ,lhs St C ,lhs St

C̄ ,lhs St C ,lhs St ′

*C̄, C+ ,lhs *St ,St ′+
(lmset-1) ∅ ,lhs ∅

(lmset-2)
A ,lhs A

(latom)

[~t/~x]A ,lhs A
′ |= [~t/~x]g *A | g+~x∈ts ,lhs St

*A | g+~x∈*ts,~t+ ,lhs *St , A′+
(lcomp-1) *A | g+~x∈∅ ,lhs ∅

(lcomp-2)

Residual Non-matching: C̄ ,¬lhs St C ,¬lhs St

C̄ ,¬
lhs St C ,¬

lhs St

*C̄, C+ ,¬
lhs St

(l¬mset-1) ∅ ,¬
lhs St

(l¬mset-2)

A ,¬
lhs St

(l¬atom)
A 6vlhs M M ,¬

lhs St

M ,¬
lhs *St , A+

(l¬comp-1)
M ,¬

lhs ∅
(l¬comp-2)

Subsumption: A vlhs *A′ | g+~x∈ts iff A = θA′ and |= θg for some θ = [~t/~x]

Fig. 2. Semantics of Matching in CHRcp

4 Operational Semantics of CHRcp

This section recalls the operational semantics of CHRcp [7]. Without loss of generality,
we assume that atomic constraints in a rule have the form p(~x), including in comprehen-
sion patterns. This simplified form pushes complex term expressions and computations
into the guard component of the rule or the comprehension pattern. The satisfiability of
a ground guard g is modeled by the judgment |= g; its negation is written 6|= g.

Similarly to [5], this operational semantics defines a goal-based execution of a
CHRcp program P that incrementally processes store constraints against rule instances
in P . By “incrementally”, we mean that goal constraints are added to the store one
by one, as we process each for potential match with the head constraints of rules in
P . We present the operational semantics in two sub-sections: Section 4.1 describes in
isolation, the processing of a rule’s left-hand side (semantics of matching) and right-
hand-side execution. Section 4.2 presents the overall operational semantics. We assume
that the constraint store contains only ground facts, a property that is maintained during
execution. This entail that matching (as opposed to unification) suffices to guarantee the
completeness of rule application.

4.1 Semantics of Matching and Rule Body Execution

The semantics of matching, specified in Figure 2, identifies applicable rules in a CHRcp

program by matching their head with the constraint store. The matching judgment
C̄ ,lhs St holds when the constraints in the store fragment St match completely
the multiset of constraint patterns C̄. It will always be the case that C̄ is ground (i.e.,
FV (C̄) = ∅). Rules (lmset-∗) iterate rules (latom) and (lcomp-∗) on St , thereby par-
titioning it into fragments matched by these rules. Rule (latom) matches an atomic
constraint A to the singleton store A. Rules (lcomp-∗) match a comprehension pattern
*A | g+~x∈ts . If the comprehension domain is empty (x ∈ ∅), the store must be empty

5

Rule Body: C̄≫rhs St C≫rhs St

C̄≫rhs St C≫rhs St ′

*C̄, C+≫rhs *St ,St ′+
(rmset-1) ∅≫rhs ∅

(rmset-2)
A≫rhs A

(ratom)

|= [~t/~x]g [t/~x]A≫rhs A
′ *A | g+~x∈ts ≫rhs A

′

*A | g+~x∈*ts,~t+ ≫rhs *St , A′+
(rcomp-1)

6|= [~t/~x]g *A | g+~x∈ts ≫rhs St

*A | g+~x∈*ts,~t+ ≫rhs St
(rcomp-2) *A | g+~x∈∅ ≫rhs ∅

(rcomp-3)

Residual Non-unifiability: P ,¬unf B̄ g B H̄ ,¬unf B̄

g B H̄ ,¬
unf B̄ P ,¬

unf B̄

P, (r @ H̄ ⇐⇒ g | C̄b) ,¬
unf B̄

(u¬
prog-1) ∅ ,¬

unf B̄
(u¬

prog-2)

g B H̄ ,¬
unf B̄ g B C ,¬

unf B̄

g B *H̄, C : i+ ,¬
unf B̄

(u¬
mset-1)

g B∅ ,¬
unf B̄

(u¬
mset-2)

g BA ,¬
unf B̄

(u¬
atom)

g BB 6vunf M g BM ,¬
unf B̄

g BM ,¬
unf *B̄, B+

(u¬
comp-1)

g BM ,¬
unf ∅

(u¬
comp-2)

g BA vunf *A′ | g′+~x∈ts iff θA ≡ θA′, |= θg′, |= θg for some θ

g′′ B *A | g+~x∈ts vunf *A′ | g′+~x′∈ts′ iff θA ≡ θA′, |= θg′′, |= θg′, |= θg for some θ
Fig. 3. Rule Body Application and Unifiability of Comprehension Patterns

rule (lcomp-2). Otherwise, rule (lcomp-1) binds ~x to an element ~t of the comprehension
domain ts , matches the instance [~t/~x]A of the pattern A with a constraint A′ in the
store if the corresponding guard instance [~t/~x]g is satisfiable, and continues with the
rest of the comprehension domain. To guarantee the maximality of comprehension pat-
terns, we test a store for residual matchings using the residual non-matching judgment
C̄ ,¬lhs St (Also shown in Figure 2). For each comprehension pattern *A′ | g+~x∈ts in
C̄, this judgment checks that no constraints in St matches A′ satisfying g.

Once a CHRcp rule instance has been identified, we need to unfold the compre-
hension patterns in its body into a multiset of atomic constraints that will be added
to the store. The judgment C̄ ≫rhs St does this unfolding: given C̄, this judgment
holds if and only if St is the multiset of all (and only) constraints found in C̄, after
comprehension patterns in C̄ have been unfolded. Figure 3 defines this judgment.

An important property of CHR is monotonicity: if a rule instance r transforms store
Ls to Ls ′, then r transforms *Ls,Ls ′′+ to *Ls ′,Ls ′′+ for any Ls ′′. This property allows
for incremental processing of constraints ([5]) that is sound w.r.t. the abstract semantics
of CHR. Monotonicity does not hold in CHRcp . We showed in [7] that to guarantee
the sound incremental goal-based execution of a CHRcp program P , we must iden-
tify those rule body constraints are monotone, and only incrementally store monotone
constraints, while non-monotone constraints are immediately stored. A monotone con-
straint in program P is a constraint A that can never be matched by a comprehension
head constraint of any rule in P . To test that a comprehension pattern M has no match

6

Goal Constraint G ::= init B̄ | lazy A | eager A#n | act A#n i

Goal Stack Gs ::= [] | [G | Gs] Store Ls ::= ∅ | *Ls, A#n+ State σ ::= 〈Gs ; Ls〉
dropIdx (C : i) ::= C getIdx (C : i) ::= {i} dropLabels(A#n) ::= A getLabels(A#n) ::= {n}

newLabels(Ls, A) ::= A#n such that n /∈ getLabels(Ls)

P[i] ::= if R ∈ P and i ∈ getIdx (R) then R else ⊥
Fig. 4. Execution States and Auxiliary Meta-operations

in a store Ls (i.e., M ,¬lhs Ls), it suffices to test M against the subset of Ls containing
just its non-monotone constraints (see [7] for proofs). We call this property of CHRcp

conditional monotonicity. Given a CHRcp program P , for each rule body constraint B
in P , if for every head constraint comprehension pattern M : j and rule guard g in P ,
B is not unifiable withM while satisfying g (denoted gBM vunf B), then we say that
B is monotone w.r.t. program P , denoted by P ,¬unf B. These judgments are defined
in the bottom half of Figure 3.

4.2 Operational Semantics

In this section, we define the overall operational semantics of CHRcp . This semantics
explicitly supports partial incremental processing of constraints that are monotone to a
given CHRcp program. Execution states, defined in Figure 4, are pairs σ = 〈Gs ; Ls〉
where Gs is the goal stack and Ls is the labeled store. Store labels n allow us to
distinguish between copies of the same constraint in the store and to uniquely associate a
goal constraint with a specific stored constraint. Each goal in a goal stack Gs represents
a unit of execution and Gs itself is a list of goals to be executed. Goal labels init,
lazy, eager and act identify the various types of goals.

Figure 4 defines several auxiliary operations that either retrieve or drop occurrence
of indices and store labels: dropIdx (H) and getIdx (H) deal with indices, dropLabels()
and getLabels() with labels. We inductively extend getIdx () to multisets of head
constraints and CHRcp rules, to return the set of all occurrence indices that appear
in them. We similarly extend dropLabels() and getLabels() to be applicable with
labeled stores. As a means of generating new labels, we also define the operation
newLabels(Ls, A) that returns A#n such that n does not occur in Ls . Given program
P and occurrence index i, P[i] denotes the rule R ∈ P in which i occurs, or ⊥ if i does
not occur in any of P’s rules. We implicitly extend the matching judgment (,lhs) and
residual non-matching judgment (,¬lhs) to annotated entities.

The operational semantics of CHRcp is defined by the judgment P B σ 7→ω σ′,
where P is a CHRcp program and σ, σ′ are execution states. It describes the goal-
oriented execution of the CHRcp program P . Execution starts in an initial execution
state σ of the form 〈[init B̄] ; ∅〉 where B̄ is the initial multiset of constraints. Fig-
ure 5 shows the transition rules for this judgment. Rule (init) applies when the leading
goal has the form init B̄. It partitions B̄ into B̄l and B̄e, both of which are unfolded
into St l and Ste respectively (via rule body application, Section 4.1). B̄l contains the
multiset of constraints which are monotone w.r.t. to P (i.e., P ,¬unf B̄l). These con-
straints are not added to the store immediately, rather we incrementally process them
by only adding them into the goal as ‘lazy‘ goals (lazily stored). Constraints B̄e are
not monotone w.r.t. to P , hence they are immediately added to the store and added to

7

(init)

P B 〈[init *B̄l, B̄e+ | Gs] ; Ls〉 7→ω 〈lazy(St l)++eager(Lse)++Gs ; *Ls,Lse+〉
such that P ,¬

unf B̄l B̄e≫rhs Ste B̄l≫rhs St l Lse = newLabels(Ls,Ste)

where eager(*Ls, A#n+) ::= [eager A#n | eager(Ls)] eager(∅) ::= []

lazy(*Stm, A+) ::= [lazy A | lazy(Stm)] lazy(∅) ::= []

(lazy-act)
P B 〈[lazy A | Gs] ; Ls〉 7→ω 〈[act A#n 1 | Gs] ; *Ls, A#n+〉
such that *A#n+ = newLabels(Ls, *A+)

(eager-act) P B 〈[eager A#n | Gs] ; *Ls, A#n+〉 7→ω 〈[act A#n 1 | Gs] ; *Ls, A#n+〉
(eager-drop) P B 〈[eager A#n | Gs] ; Ls〉 7→ω 〈Gs ; Ls〉 if A#n /∈ Ls

(act-apply)

P B 〈[act A#n i | Gs] ; *Ls,Lsh,Lsa, A#n+〉 7→ω 〈[init θB̄ | Gs] ; Ls〉
if P[i] = (r @ *H̄h, C : i+⇐⇒ g | B̄), there exists some θ such that
|= θg θC ,lhs *Lsa, A#n+ θH̄h ,lhs Lsh θH̄h ,¬

lhs Ls θC ,¬
lhs Ls

(act-next)
P B 〈[act A#n i | Gs] ; Ls〉 7→ω 〈[act A#n (i+ 1) | Gs] ; Ls〉
if (act-apply) does not applies.

(act-drop) P B 〈[act A#n i | Gs] ; Ls〉 7→ω 〈Gs ; Ls〉 if P[i] = ⊥

Fig. 5. Operational Semantics of CHRcp

the goals as ‘eager’ goals (eagerly stored). Rule (lazy-act) handles goals of the form
lazy A: we initiate active matching on A by adding it to the store and adding the new
goal act A#n 1. Rules (eager-act) and (eager-drop) deal with goals of the form
eager A#n. The former adds the goal ‘act A#n 1’ if A#n is still present in the
store; the later simply drops the leading goal otherwise. The last three rules deal with
leading goals of the form act A#n i: rule (act-apply) handles the case where the
active constraint A#n matches the ith head constraint occurrence of P . If this match
satisfies the rule guard, matching partners exist in the store and the comprehension max-
imality condition is satisfied, we apply the corresponding rule instance. These matching
conditions are defined by the semantics of matching of CHRcp (Figure 2). Note that the
rule body instance θB̄ is added as the new goal init B̄. This is because it potentially
contains non-monotone constraints: we will employ rule (init) to determine the storage
policy of each constraint. Rule (act-next) applies when the previous two rules do not,
hence we cannot apply any instance of the rule with A#n matching the ith head con-
straint. Finally, rule (act-drop) drops the leading goal if occurrence index i does not
exist in P . The correctness of this operational semantics w.r.t. a more abstract semantics
for CHRcp is proven in [7].

5 Compiling CHRcp Rules

While Figures 2–5 provide a formal operational description of the overall multiset
rewriting semantics of CHRcp , they are high-level in that they keep multiset match-
ing abstract. Specifically, the use of judgments,lhs and,¬lhs in rule (act-apply) hides
away crucial details of how a practical implementation is to conduct these expensive op-
erations. In this section, we describe a scheme that compiles CHRcp head constraints
into a lower-level representation optimized for efficient execution, without using ,lhs

or ,¬lhs. This compilation focuses on CHRcp head constraints (left-hand side), where
the bulk of execution time (and thus most optimization opportunities) comes from.

8

p1 (E ,Z) : 1
*p2 (Y ,C ,D) | D ∈̇Ws,C > D+(C ,D)∈Ds : 2
p3 (X ,Y ,F ,Z) : 3
p4 (Z ,Ws) : 4
*p5 (X ,P) | P ∈̇Ws+P∈Ps : 5

⇐⇒
E ≤ F

Ws 6= ∅
Ps 6= ∅

...

i. Active p1 (E ,Z) : 1
ii. LookupAtom 〈true; {Z}〉 p4 (Z ,Ws) : 4
iii. CheckGuard Ws 6= ∅
iv. LookupAtom 〈E ≤ F ; {Z}〉 p3 (X ,Y ,F ,Z) : 3
v. LookupAll 〈P ∈̇Ws; {X}〉 p5 (X ,P) : 5

vi. CompreDomain 5 P Ps
vii. CheckGuard Ps 6= ∅
viii. LookupAll 〈D ∈̇Ws; {Y }〉 p2 (Y ,C ,D) : 2
ix. FilterGuard 4 C ≥ D
x. CompreDomain 4 (C,D) Ds

Fig. 6. Optimized Join Ordering for p1 (E ,Z) : 1

As described in Section 4, an active constraint act A#n i is matched against an
occurrence of head constraint Hi in a rule r, and all other head constraints Hk in r are
matched against distinct constraints in the store. We call Hi the active head constraint
and the other Hk partner head constraints (or simply, active pattern and partners re-
spectively). Computing complete matches for the multiset of constraint patterns is a
combinatorial search problem. In general, any ordering of partners leads to the com-
putation of intermediate data that may ultimately be discarded, resulting in redundant
storage and processing time. Therefore, we want to determine an optimized ordering
of partners that minimizes this intermediate data. Join ordering [4,6] leverages the de-
pendencies among rule heads and rule guards to do precisely this. This allows prun-
ing search branches early and utilizing lookup methods (e.g., indexing on hash maps,
balanced trees) that provide the best possible asymptotic time complexity. Our work
extends traditional approaches to CHR compilation [6] to handle comprehension head
constraints and augments them with optimizations specific to them. In particular, our
approach is an extension of static join-ordering techniques (e.g., [4]) that relies on a
heuristic cost model to determine optimized orderings at compile-time.

5.1 Introducing CHRcp Join Ordering

The top of Figure 6 shows an example rule with five head constraints. In this example,
all predicates are different, hence each head constraint will always match distinct con-
straints from the store (in Section 5.3, we discuss the case where different rule heads
match the same constraint). To better appreciate the benefits of join ordering, consider
an example constraint store Ls of the form:

p1(tE1, tZ1),

n2⊎
i=1

p2(tY i, tCi, tDi),

n3⊎
i=1

p3(tXi, tY i, tFi, tZi),

n4⊎
i=1

p4(tZi, tWsk),

n5⊎
i=1

p5(tXi, tPi)

where
⊎n
i=1p(~ti) denotes a store fragment containing n ground constraints of the form

p(~ti). Hence n2, n3, n4 and n5 are the number of constraints in the store for the pred-
icates p2, p3, p4 and p5, respectively. As we carry out this analysis, we optimistically
assume that each of the n2 instances of p2 has a different term tY i in its first argument,
and similarly for each argument position and predicate.

Consider a naive execution of the rule in Figure 6 in the textual order with active
constraint act p1(tE1, tZ1)#n i for some n and i, so that p1(E,Z) : 1 is the active
pattern. This binds variables E and Z to terms tE1 and tZ1 respectively. Next, we iden-
tify all constraints p2(tY i, tCi, tDi) such that C > D, and for each bindings tY i for Y ,

9

we build the comprehension range Ds from the tCi’s and tDi’s. Since this pattern shares
no common variables with the active pattern and variable Ws is not ground, to build the
above match we have no choice but examining all n2 constraints for p2 in the store. Fur-
thermore, the guardD ∈Ws would have to be enforced at a later stage, after p4(Z,Ws)
is matched, as a post comprehension filter. We next seek a match for p3(X,Y, F, Z) : 3.
Because it shares variables Y and Z with patterns 1 and 2, we can find matching candi-
dates in constant time, if we have the appropriate indexing support (p3(, Y, , Z)). The
next two patterns (p4(Z,Ws) : 4 and *p5(X,P) | P ∈̇Ws+P∈Ps : 5) are matched in
a similar manner and finally Ps 6= ∅ is checked at the very end. This naive execution
has two main weaknesses: first, scheduling partner 2 first forces the lower bound of the
cost of processing this rule to be O(n2), even if we find matches to partners 3 and 4 in
constant time. Second, suppose we fail to find a match for partner 5 such that Ps 6= ∅,
then the execution time spent computing Ds of partner 2, including the time to search
for candidates for partners 3 and 4, was wasted.

Now consider the join ordering for the active pattern p1(E,Z) : 1 shown in Fig-
ure 6. It is an optimized ordering of the partner constraints in this instance: Task (i)
announces that p1 (E ,Z) : 1 is the constraint pattern that the active constraint must
match. Task (ii) dictates that we look up the constraint p4(Z,Ws). This join task main-
tains a set of possible constraints that match partner 4 and the search proceeds by ex-
ploring each constraint as a match to partner 4 until it finds a successful match or fails;
the indexing directive I = 〈true; {Z}〉 mandates a hash multimap lookup for p4 con-
straints with first argument value of Z (i.e., p4(Z,)). This allows the retrieval of all
matching candidate constraints from Ls in amortized constant time (as oppose to linear
O(n4)). Task (iii) checks the guard condition Ws 6= ∅: if no such p4(Z,Ws) exists,
execution of this join ordering can terminate immediately at this point (a stark improve-
ment from the naive execution). Task (iv) triggers the search for p3(X,Y, F, Z) with
the indexing directive 〈E ≤ F ; {Z}〉. This directive specifies that candidates of part-
ner 3 are retrieved by utilizing a two-tiered indexing structure: a hash table that maps
p3 constraints in their fourth argument (i.e., p3 (, , ,Z)) to a binary balance tree that
stores constraints in sorted order of the third argument (i.e., p3 (, ,F ,), E ≤ F).
The rule guard E ≤ F can then be omitted from the join ordering, since its satisfiabil-
ity is guaranteed by this indexing operation. Task (v) initiates a lookup for constraints
matching p5 (X ,P) : 5 which is a comprehension. It differs from Tasks (ii) and (iv)
in that rather than branching for each candidate match to p5 (X ,P) : 5 , we collect the
set of all candidates as matches for partner 5. The multiset of constraints matching this
partner is efficiently retrieved by the indexing directive 〈P ∈̇ Ws; {X}〉. Task (vi)
computes the comprehension domain Ps by projecting the multiset of instances of P
from the candidates of partner 5. The guard Ps 6= ∅ is scheduled at Task (vii), prun-
ing the current search immediately if Ps is empty. Tasks (viii − x) represent the best
execution option for partner 2, given that composite indexing (D ∈̇ Ws and C ≤ D)
is not yet supported in our implementation: Task (viii) retrieves candidates matching
p2 (Y ,C ,D) : 2 via the indexing directive 〈D ∈̇Ws; {Y }〉, which specifies that we re-
trieve candidates from a hash multimap that indexes p2 constraints on the first and third
argument (i.e., p2 (Y , ,D)); values of D are enumerated from Ws . Task (ix) does a
post-comprehension filter, removing candidates of partner 2 that do not satisfy C ≤ D.
Finally, task (x) computes the comprehension domain Ds . While we still conduct a
post comprehension filtering (Task (ix)), this filters from a small set of candidates (i.e.,

10

i. Active p2 (Y ,C ,D) : 2

ii. CheckGuard C > D
iii. LookupAtom 〈true; {Z}〉 p4 (Z ,Ws) : 4

iv. CheckGuard Ws 6= ∅, D ∈̇Ws
v. LookupAtom 〈E ≤ F ; {Z}〉 p3 (X ,Y ,F ,Z) : 3
vi. Bootstrap {C,D} 2
... (Similar to Tasks v − x of Figure 6)

Fig. 7. Optimized Join Ordering for *p2 (Y ,C ,D) | D ∈̇Ws,C > D+(C ,D)∈Ds : 2

p2 (Y , ,D) whereD ∈̇Ws) and hence is likely more efficient than linear enumeration
and filtering on the store (i.e., O(|Ws |) vs O(n2)).

Such optimized join orderings are statically computed by our compiler and the
constraint store is compiled to support the set of all indexing directives that appears
in the join orderings. In general, our implementation always produces join orderings
that schedule comprehension partners after all atom partners. This is because com-
prehension lookups (LookupAll) never fail and hence do not offer any opportunity
for early pruning. However, orderings within each of the partner categories (atom or
comprehension) are deliberate. For instance, p4(Z,Ws) : 4 was scheduled before
p3(X ,Y ,F ,Z) : 3 since it is more constrained: it has fewer free variables and Ws 6= ∅
restricts it. Comprehension partner 5 was scheduled before 2 because of guard Ps 6= ∅
and also that 2 is considered more expensive because of the post lookup filtering (Task
(ix)). Cost heuristics are discussed in Section 6.

5.2 Bootstrapping for Active Comprehension Head Constraints

In the example in Figure 6, the active pattern is an atomic constraint. Our next exam-
ple illustrates the case where the active pattern Hi is a comprehension. In this case,
the active constraint A#n must be part of a match with the comprehension rule head
Hi = *A′ | g+x∈xs : i. While the join ordering should allow early detection of failure
to match A with A′ or to satisfy comprehension guard g, it must also avoid scheduling
comprehension rule headHi before atomic partner constraints are identified. Our imple-
mentation uses bootstrapping to achieve this balance: Figure 7 illustrates this compila-
tion for the comprehension head constraint *p2(Y,C,D) | D ∈̇Ws, C > D+(C,D)∈Ds :
2 from Figure 6 playing the role of the active pattern. The key components of boot-
strapping are highlighted in boxes: Task (i) identifies p2(Y,C,D) as the active pat-
tern, treating it as an atom. The match for atom partners proceeds as in the previ-
ous case (Section 5.1) with the difference that the comprehension guards of partner 2
(D ∈̇Ws, C > D) are included in the guard pool. This allows us to schedule them early
(C > D in Task (ii) and D ∈̇Ws in Task (iv)) or even as part of an indexing directive
to identify compatible partner atom constraints that support the current partial match.
Once all atomic partners are matched, at Task (vi), Bootstrap {C,D} 5, clears the
bindings imposed by the active constraint, while the rest of the join ordering executes
the actual matching of the comprehension head constraint similarly to Figure 6.

5.3 Uniqueness Enforcement

In general, a CHRcp rule r may have overlapping head constraints, i.e., there may be
a store constraint A#n that matches both Hj and Hk in r’s head. Matching two head
constraints to the same object in the store is not valid in CHRcp . We guard against

11

r @ p(D0) : 1 , q(P) : 2 , *p(D1) | D1 > P+D1∈Xs : 3 , *p(D2) | D2 ≤ P+D2∈Ys : 4 ⇐⇒ . . .

i. Active p(D0) : 1
ii. LookupAtom 〈true; ∅〉 q(P) : 2
iii. LookupAll 〈D1 > P ;∅〉 p(D1) : 3
iv. FilterHead 3 1
v. CompreDomain 3 D1 Xs

vi. LookupAll 〈D2 ≤ P ;∅〉 p(D2) : 4
vii. FilterHead 4 1

viii. FilterHead 4 3
ix. CompreDomain 4 D2 Ys

Fig. 8. Uniqueness Checks: Optimized Join Ordering for p(D0) : 1

this by providing two uniqueness enforcing join tasks: If Hj and Hk are atomic head
constraints, join task NeqHead j k (figure 9) checks that constraints A#m and A#p
matchingHj andHk respectively are distinct (i.e.,m 6= p). If eitherHj orHk (or both)
is a comprehension, the join ordering must include a FilterHead join task.

Figure 8 illustrates filtering for active pattern p(D0) : 1 . Task (iv) FilterHead 3 1
states that we must filter constraint(s) matched by rule head 1 away from constraints
matched by partner 3. For partner 4, we must filter from 1 and 3 (Tasks (vii − viii)).
Notice that partner 2 does not participate in any such filtering, since its constraint has
a different predicate symbol and filtering is obviously not required. However, it is less
obvious that task (viii), highlighted, is in fact not required as well: because of the com-
prehension guards D1 > P and D2 ≤ P , partners 3 and 4 always match distinct sets
of p constraints. Our implementation uses a more precise check for non-unifiability of
head constraints (vunf) to determine when uniqueness enforcement is required.

6 Building Join Orderings

In this section, we formalize join orderings for CHRcp , as illustrated in the previous
section. We first construct a valid join ordering for a CHRcp rule r given a chosen
sequencing of partners of r and later discuss how this sequence of partners is chosen.
Figure 9 defines the elements of join orderings, join tasks and indexing directives. A
list of join tasks ~J forms a join ordering. A join context Σ is a set of variables. Atomic
guards are as in Figure 1, however we omit equality guards and assume that equality
constraints are enforced as non-linear variable patterns in the head constraints. For sim-
plicity, we assume that conjunctions of guards g1 ∧ g2 are unrolled into a multiset of
guards ḡ = *g1, g2+, with |= ḡ expressing the satisfiability of each guard in ḡ. An index-
ing directive is a tuple 〈g; ~x〉 such that g is an indexing guard and ~x are hash variables.
The bottom part of Figure 9 defines how valid index directives are constructed. The
relation Σ;A B t 7→ x states that from the join context Σ, term t connects to atomic
constraintA via variable x. Term tmust be either a constant or a variable that appears in
Σ and x ∈ FV (A). The operation idxDir(Σ,A, g) returns a valid index directive for a
given constraint A, the join context Σ and the atomic guard g. This operation requires
that Σ be the set of all variables that have appeared in a prefix of a join ordering. It is
defined as follows: If g is an instance of an order relation and it acts as a connection
between Σ and A (i.e., Σ;A B ti 7→ tj where ti and tj are its arguments), then the
operation returns g as part of the index directive, together with the set of variables that
appear in both Σ and A. If g is a membership relation t1 ∈̇ t2, the operation returns g
only if Σ;A B t2 7→ t1. Otherwise, g cannot be used as an index, hence the operation

12

Join Context Σ ::= ~x Index Directive I ::= 〈g; ~x〉
Join Task J ::= ActiveH | LookupAtom I H | LookupAll I H

| Bootstrap ~x i | CheckGuard ḡ | FilterGuard i ḡ
| NeqHead i i | FilterHead i i | CompreDomain i ~x x

Σ;AB t 7→ x iff t is a constant or t is a variable such that t ∈ Σ and x ∈ FV (A)

idxDir(Σ,A, g) ::=


〈g;Σ ∩ FV (A)〉

{
if g = t1 op t2 and op ∈ {≤, <,≥, >}
and Σ;AB ti 7→ tj for {i, j} = {1, 2}

〈g;Σ ∩ FV (A)〉 if g = t1 ∈̇ t2 and Σ;AB t2 7→ t1

〈true;Σ ∩ FV (A)〉 otherwise

allIdxDirs(Σ,A, ḡ) ::= *idxDir(Σ,A, g) | for all g ∈ ḡ ∪ true+

Fig. 9. Join Tasks and Indexing Directives

returns true . Finally, allIdxDirs(Σ,A, ḡ) defines the set of all such indexing derivable
from idxDir(Σ,A, g) where g ∈ ḡ.

An indexing directive 〈g; ~x〉 for a constraint pattern p(~t) determines what type of
indexing method can be exploited for the given constraint type. For example, 〈true; ~x〉
where ~x 6= ∅ states that we can store constraints p(~t) in a hash multimap that indexes the
constraints on argument positions of ~t where variables ~x appear, supporting amortized
O(1) lookups. For 〈x ∈̇ ts; ~x〉, we store p(~t) in the same manner, but during lookup
we enumerate the values of x from ts , hence we get amortized O(m) lookups, where
m is size of ts . Directive 〈x op y; ∅〉 specifies binary tree storage and binary search
lookups, while 〈x op y; ~x〉 specifies a composite structure: a hash map with binary trees
as contents. The default indexing directive is 〈true; ∅〉, that corresponds to a linear
iteration lookup on p(~t). For full details, refer to [8].

Figure 10 defines the operation compileRuleHead(Hi, ~Ha, ~Hm, ḡ) which compiles
an active pattern Hi, a particular sequencing of partners, and rule guards of a CHRcp

rule (i.e., r @ * ~Ha, ~Hm, Hi+ ⇐⇒ ḡ | B̄) into a valid join ordering for this sequence.
A join-ordering ~J is valid w.r.t. to a CHR rule r if and only if it possesses certain
well-formedness properties (See [8] for details of these properties) that allows for its
sound execution of the abstract matching machine (Section 7). The topmost definition
of compileRuleHead in Figure 10 defines the case for Hi being an atomic constraint,
while the second definition handles the case for a comprehension. The auxiliary oper-
ation buildJoin(~H,Σ, ḡ, ~Hh) iteratively builds a list of join tasks from a list of head
constraints ~H , the join context Σ and a multiset of guards ḡ, the guard pool, with a list
of head constraints ~Hh, the prefix head constraints. The join context contains the vari-
ables that appear in the prefix head constraints, while the guard pool contains guards g
that are available for either scheduling as tests or as indexing guards. The prefix head
constraints contain the list of atomic constraint patterns observed thus far in the com-
putation. If the head of ~H is atomic A : j, the join ordering is constructed as follows:
the subset ḡ1 of ḡ that are grounded by Σ are scheduled at the front of the order-
ing (CheckGuard ḡ1). This subset is computed by the operation scheduleGrds(Σ, ḡ)
which returns the partition of ḡ such that ḡ1 contains guards grounded by Σ and ḡ2
contains all other guards. This is followed by the lookup join task for atom A : j (i.e.,
LookupAtom 〈gi; ~x〉 A : j) and uniqueness enforcement join tasks neqHs(A : j, ~Hh)

13

compileRuleHead(A : i, ~Ha, ~Hm, ḡ) ::= [Active A : i | Ja]++Jm++checkGrds(ḡ′′)

where (Ja, Σ, ḡ
′) = buildJoin(~Ha,FV (Ai), ḡ,[]) and (Jm, Σ

′, ḡ′′) = buildJoin(~Hm, Σ, ḡ
′, ~Ha)

compileRuleHead(*A | ḡm+~x∈xs : i, ~Ha, ~Hm, ḡ)
::= [Active A : i | Ja]++[Bootstrap FV (A)− FV (~x) i | Jm]++checkGrds(ḡ′′)

where (Ja, Σ, ḡ
′) = buildJoin(~Ha,FV (Ai), ḡ ∪ ḡm,[])

(Jm, Σ
′, ḡ′′) = buildJoin([*Ai | ḡm+~x∈xs | ~Hm], Σ − ~x, ḡ′, ~Ha)

buildJoin([A : j | ~H], Σ, ḡ, ~Hh)

::= ([CheckGuard ḡ1,LookupAtom 〈gi; ~x〉 A : j]++neqHs(A : j, ~Hh)++~J , Σ, ḡr)
where (ḡ1, ḡ2) = scheduleGrds(Σ, ḡ) and 〈gi; ~x〉 ∈ allIdxDirs(Σ,A, ḡ2)

(~J , Σ′, ḡr) = buildJoin(~H,Σ ∪ FV (A), ḡ2 − gi, ~Hh++[A : j])

buildJoin([*A | ḡm+~x∈xs : j | ~H], Σ, ḡ, ~Hh)
:= ([CheckGuard ḡ1,LookupAll 〈gi; ~x′〉 A : j,FilterGuard (ḡm − {gi})]

++filterHs(*A | ḡm+~x∈xs : j, ~Hh)++[CompreDomain j ~x xs | ~J], Σ, ḡr)
where (ḡ1, ḡ2) = scheduleGrds(Σ, ḡ) and 〈gi; ~x′〉 ∈ allIdxDirs(Σ,A, ḡ2 ∪ ḡm)

(~J , Σ′, ḡr) = buildJoin(H̄,Σ ∪ FV (A), ḡ2 − gi, ~Hh++[*A | ḡm+~x∈xs : j])

buildJoin([], Σ, ḡ, ~Hh) ::= ([], Σ, ḡ)

scheduleGrds(Σ, ḡ) ::= ({g | g ∈ ḡ,FV (g) ⊆ Σ}, {g | g ∈ ḡ,FV (g) 6⊆ Σ})
neqHs(p() : j, p′() : k) ::= if p = p′ then [NeqHead j k] else []
filterHs(C : j, C′ : k) ::= if true B C′ vunf C then [FilterHead j k] else []

Fig. 10. Building Join Ordering from CHRcp Head Constraints

which returns a join tasks NeqHead j k for each occurrence in ~Hh that has the same
predicate symbol as A. The rest of the join ordering ~J is computed from the tail of ~H .
Note that the operation picks one indexing directive 〈gi; ~x〉 from the set of all available
indexing directives (allIdxDirs(Σ,A, ḡ2)). Hence from a given sequence of partners,
compileRuleHead defines a family of join orderings for the same inputs, modulo in-
dexing directives. If the head of ~H is a comprehension, the join ordering is constructed
similarly, with the following differences: 1) a LookupAll join tasks in created in
the place of LookupAtom; 2) the comprehension guards ḡm are included as pos-
sible indexing guards (allIdxDirs(Σ,A, ḡ2 ∪ ḡm)); 3) immediately after the lookup
join task, we schedule the remaining of comprehension guards as filtering guards (i.e.,
FilterGuard ḡm − gi); 4) FilterHead uniqueness enforcement join tasks are
deployed (filterHs(C : j, C ′ : k)) as described in Section 5.3; 5) We conclude the
comprehension partner with CompreDomain ~x xs .

We briefly highlight the heuristic scoring function we have implemented to deter-
mine an optimized join ordering for each rule occurrence Hi of a CHRcp program
(refer to [8] for more details). This heuristic augments [6] to handle comprehensions.
While we do not claim that such heuristics always produce optimal join-orderings, in
practice it produces join-orderings that perform generally better than arbitrary order-
ing (see Section 9). Given a join ordering, we calculate a numeric score for the cost
of executing ~J : a weighted sum value (n − 1)w1 + (n − 2)w2 + ... + wn for a join
ordering with n partners, such that wj is the join cost of the jth partner Hj . Since
earlier partners have higher weight, this scoring rewards join orderings with the least
expensive partners scheduled earlier. The join cost wj for a partner constraint C : j is
a tuple (vf , vl) where vf is the degree of freedom and vl is the indexing score. The

14

Matching Context Θ ::= 〈A#n; ~J ; Ls〉
Matching State M ::= 〈J ; pc; ~Br ; θ; Pm〉

Backtrack Branch Br ::= (pc, θ,Pm)
Candidate Match U ::= (θ,A#n)
Partial Match Pm ::= Pm, i 7→ Ū | ∅

match(A,A′) ::= if exists φ such that φA = A′ then φ else ⊥
lookupCands(Ls, A′, 〈g; ~x′〉) ::= *(φ,A#n) | for all A#n ∈ Ls s.t. match(A,A′) = φ and φ 6= ⊥ and |= g+

Fig. 11. LHS Matching States and Auxiliary Operations

degree of freedom vf counts the number of new variables introduced by C, while the
indexing score vl is the negative of the number of common variables between C and
all other partners matched before it. In general, we want to minimize vf since a higher
value indicates larger numbers of candidates matching C, hence larger branching factor
for LookupAtom join tasks, and larger comprehension multisets for LookupAll join
tasks. Our heuristics also accounts for indexing guards and early scheduled guards: a
lookup join tasks for C : j receives a bonus modifier to wj if it utilizes an indexing
directive 〈gα; 〉 where gα 6= true and for each guard (CheckGuard g) scheduled im-
mediately after it. This rewards join orderings that heavily utilizes indexing guards and
schedules guards earlier. The filtering guards of comprehensions (FilterGuard) are
treated as penalties instead, since they do not prune the search tree.

For each rule occurrenceHi and partner atomic constraints and comprehensions H̄a

and H̄c and guards ḡ, we compute join orderings from all permutations of sequences of
H̄a and H̄c. For each such join ordering, we compute the weighted sum score and select
an optimized ordering based on this heuristic. Since CHRcp rules typically contain a
small number of constraints, join ordering permutations can be practically computed.

7 Executing Join Orderings

In this section, we define the execution of join orderings by means of an abstract state
machine. The CHRcp abstract matching machine takes an active constraint A#n, the
constraint store Ls and a valid join ordering ~J for a CHRcp rule r, and computes an
instance of a head constraint match for r in Ls .

Figure 11 defines the elements of this abstract machine. The inputs of the machine
are the matching context Θ, A#n, a join ordering ~J and the constraint store Ls . A
matching state M is a tuple consisting of the current join task J , a program counter
pc, a list of backtracking branches ~Br, the current substitution θ and the current partial
match Pm . A partial match is a map from occurrence indices i to multisets of candidates
U , which are tuples (θ,A#n). We denote the empty map as ∅ and the extension of
Pm with i 7→ U as (Pm, i 7→ U). We extend the list indexing notation Pm[j] to
retrieve the candidates that Pm maps j to. We define two auxiliary meta-operations:
match(A,A′) returns a substitution φ such that φA = A′ if it exists and ⊥ otherwise;
lookupCands(Ls, A′, 〈g; ~x〉) retrieves the multiset of candidates A#n in store Ls that
match pattern A′ and satisfy g for indexing directive 〈g; ~x〉.

Given an execution context Θ = 〈A#n; ~J ; Ls〉, the state transition operation, de-
noted Θ B M �lhs M′, defines a transition step of this abstract machine. Figure 12
defines its transition rules: rule (active) executes Active A′ : i by matching the ac-
tive constraint A#n with A′ (φ = match(A, θA′)). If this match is successful (φ 6=

15

(active)
Θ B 〈Active A′ : i; pc; Br ; θ; Pm〉 �lhs 〈~J[pc]; pc+1; Br ; θφ; Pm, i 7→ (φ,A#n)〉
if φ = match(A, θA′) and φ 6= ⊥

(lookup-atom)

Θ B 〈LookupAtom 〈g; ~x〉 A′ : j; pc; Br ; θ; Pm〉
�lhs 〈~J[pc]; pc+1; Br ′++Br ; θφ; Pm, j 7→ (φ,A′′#m)〉

if *Ū ,(φ,A′′#m)+ = lookupCands(Ls, θA′, 〈θg; ~x〉)
Br ′ = *(pc, θφ,Pm, j 7→ (φ,A′′#m)) | for all (φ,A′′#m) ∈ Ū+

(check-guard) Θ B 〈CheckGuard ḡ; pc; Br ; θ; Pm〉 �lhs 〈~J[pc]; pc+1; Br ; θ; Pm〉 if |= θḡ

(lookup-all)
Θ B 〈LookupAll 〈g; ~x〉 A′ : j; pc; Br ; θ; Pm〉 �lhs 〈~J[pc]; pc+1; Br ; θ; Pm, j 7→ Ū〉
where Ū = lookupCands(Ls, θA′, 〈θg; ~x〉)

(filter-guard)
Θ B 〈FilterGuard j ḡ; pc; Br ; θ; Pm, j 7→ Ū〉 �lhs 〈~J[pc]; pc+1; Br ; θ; Pm, j 7→ Ū ′〉
where Ū ′ = *(φ′, C) | for all (φ′, C) ∈ Ū s.t. |= θφ′ḡ+

(neq-head)
Θ B 〈NeqHead j k; pc; Br ; θ; Pm〉 �lhs 〈~J[pc]; pc+1; Br ; θ; Pm〉
if Pm[j] = (, A′#m) and Pm[k] = (, A′#n) such that m 6= n

(filter-head)

Θ B 〈FilterHead j k; pc; Br ; θ; Pm, j 7→ Ū , k 7→ Ū ′〉
�lhs 〈~J[pc]; pc+1; Br ; θ; Pm, j 7→ Ū ′′, k 7→ Ū ′〉

where Ū ′′ = *(φ,A′′#m) | for all (φ,A′′#m) ∈ Ū s.t. ¬∃(, A′′#m) ∈ Ū ′+

(compre-dom)
Θ B 〈CompreDomain j ~x xs; pc; Br ; θ; Pm〉 �lhs 〈~J[pc]; pc+1; Br ; θφ; Pm〉
where Pm[j] and φ = [*φ′~x | for all (φ′,) ∈ Ū+/xs]

(bootstrap) Θ B 〈Bootstrap ~x j; pc; Br ; θ[/~x]; Pm, j 7→ 〉 �lhs 〈~J[pc]; pc+1; Br ; θ; Pm〉

(backtrack)
Θ B 〈 ; pc;[(pc′, θ′,Pm ′) | Br]; θ; Pm〉 �lhs 〈~J[pc′]; pc′+1; Br ; θ′; Pm ′〉
if neither (lookup-atom), (check-guard) nor (neq-head) applies.

(fail-match)
Θ B 〈 ; pc;∅; θ; Pm〉 �lhs ⊥
if neither (active), (lookup-atom), (check-guard), (neq-head) nor (backtrack) applies.

Fig. 12. Execution of CHRcp Join Ordering

⊥), the search proceeds. Rule (lookup-atom) executes LookupAtom 〈g; ~x′〉 A′ : j
by retrieving (lookupCands(Ls, θA, 〈θg; ~x〉)) constraints in Ls that match A′ : j. If
there is at least one such candidate (φ,A′′#m), the search proceeds with it as the
match to partner j and all other candidates as possible backtracking branches (Br ′).
This is the only type of join task where the search branches. Rule (check-guard)
executes CheckGuard ḡ by continuing the search only if all guards ḡ are satisfi-
able under the current substitution (|= θḡ). Rule (lookup-all) defines the case for
LookupAll 〈g; ~x〉 A′ : j, during which candidates matching A′ are retrieved (Ū =
lookupCands(Ls, θA, 〈θg; ~x〉)). But rather than branching, the search proceeds by ex-
tending the partial match with all candidates (i.e., j 7→ Ū). Rule (filter-guard) de-
fines the case for FilterGuard j ḡ, in which the search proceeds by filtering from
Pm[j] candidates that do not satisfy the guard conditions ḡ. Rule (neq-head) de-
fines the case for NeqHead j k: if Pm[j] and Pm[k] maps to unique constraints,
the search proceeds. Rule (filter-head) executes FilterHead j k by filtering from
Pm[j] any candidates that appear also in Pm[k]. Rule (compre-dom) executes
CompreDomain j ~x xs by extending the current substitution θ with φ = [ps/xs]
where ps is the multiset of projections of ~x extracted from each candidate of Pm[j].
Rule (bootstrap) executes Bootstrap ~x j by removing mappings of j from cur-

16

rent partial matches and mappings of ~x from the current substitution. Rule (backtrack)
backtracks when rules (lookup-atom), (check-guard) and (neq-head) are not ap-
plicable. Backtracking is achieved by accessing the head of the backtracking branches
(pc′, θ′,Pm ′), and restoring the execution state to that particular state: the current join
task becomes ~J[pc′], the program counter pc′ + 1, the current substitution θ′ and the
partial matches Pm ′. If there are no more backtracking options, rule (fail-match) de-
clares failure to find a match. Execution of this machine implicitly terminates when pc

reaches an index outside the join ordering (i.e., ~J[pc] = ⊥).

8 Correctness of CHRcp Abstract Matching Machine

In this section, we highlight the correctness results of the CHRcp abstract matching
machine. Specifically, we show that our abstract machine always terminates for a valid
matching context 〈A#n; ~J ; Ls〉. By valid, we mean that Ls is finite, that A#n ∈ Ls ,
and that ~J is a join ordering constructed by compileRuleHead . We also show that
it produces sound results w.r.t. the CHRcp operational semantics. Finally, we show
that it is complete for a class of CHRcp rules that are not selective on comprehension
patterns. We assume that matching (match(A,A′)) and guard satisfiability tests (|= g)
are decidable procedures. Proofs and details for these results can be found in [8].

We denote the exhaustive transition of the CHRcp abstract matching machine as
Θ B M �∗lhs M′. There,M′ is a terminal state of the form 〈⊥; ; ; ; 〉: ⊥ since
the program counter has gone past the last index of ~J . An initial state has the form
〈~J[0]; 1;∅; ·;∅〉. For our CHRcp abstract matching machine to be effective, we need
some guarantees that if we run it on a valid join ordering ~J and a finite constraint store
Ls , execution either terminates at some terminal state (i.e., 〈⊥; ; ; ; 〉), or returns ⊥.

Theorem 1 (Termination of the CHRcp Abstract Matching Machine). For any
valid Θ = 〈A#n; ~J ; Ls〉, we have Θ B 〈~J[0]; 1;∅; ·;∅〉 �∗lhs M such that either
M = 〈⊥; ; ; θ; Pm〉 orM = ⊥.

The CHRcp abstract matching machine is also sound w.r.t. the semantics of match-
ing of CHRcp : in the final state of a valid execution, θ and Pm corresponds to head
constraint match as specified by the semantics of matching of CHRcp (Figure 2). The
operation constr(Pm, i) returns the multiset of all constraints in partial match Pm
mapped by i.

Theorem 2 (Soundness of the CHRcp Abstract Matching Machine). For any
CHRcp head constraints C : i, ~Ha, ~Hm and ḡ, such that ~J = compileRuleHead(C :

i, ~Ha, ~Hm, ḡ), given a constraint store Ls and an active constraint A#n, if
〈A#n; ~J ; Ls〉 B 〈~J[0]; 1;∅; ·;∅〉 �∗lhs 〈 ; ; ; θ; Pm〉, then for some Lsact,
Lspart, Lsrest such that Ls = *Lsact,Lspart,Lsrest+ and Lsact = constr(Pm, i)

and Lspart = constr(Pm, getIdx (* ~Ha, ~Hm+)), we have 1) |= θg, 2) C : i ,lhs Lsact,
3) θ* ~Ha, ~Hm+ ,lhs Lspart, and 4) θ* ~Ha, ~Hm, C : i+ ,¬lhs Lsrest.

However, our CHRcp abstract matching machine is not complete in general. Incom-
pleteness stems from the fact that it greedily matches comprehension patterns: compre-
hensions that are scheduled early consume all matching constraints in the store Ls .

17

Program Standard rules only With comprehensions Code reduction (lines)
Swap 5 preds 7 rules 21 lines 2 preds 1 rule 10 lines 110%
GHS 13 preds 13 rules 47 lines 8 preds 5 rules 35 lines 34%

HQSort 10 preds 15 rules 53 lines 7 preds 5 rules 38 lines 39%

Program Input Size Orig +OJO
+OJO
+Bt

+OJO
+Mono

+OJO
+Uniq

All Speedup

(40, 100) 241 vs 290 121 vs 104 vs 104 vs 103 vs 92 vs 91 33%
Swap (200, 500) 1813 vs 2451 714 vs 681 vs 670 vs 685 vs 621 vs 597 20%

(1000, 2500) 8921 vs 10731 3272 vs 2810 vs 2651 vs 2789 vs 2554 vs 2502 31%
(100, 200) 814 vs 1124 452 vs 461 vs 443 vs 458 vs 437 vs 432 5%

GHS (500, 1000) 7725 vs 8122 3188 vs 3391 vs 3061 vs 3290 vs 3109 vs 3005 6%
(2500, 5000) 54763 vs 71650 15528 vs 16202 vs 15433 vs 16097 vs 15835 vs 15214 2%

(8, 50) 1275 vs 1332 1117 vs 1151 vs 1099 vs 1151 vs 1081 vs 1013 10%
HQSort (16, 100) 5783 vs 6211 3054 vs 2980 vs 2877 vs 2916 vs 2702 vs 2661 15%

(32, 150) 13579 vs 14228 9218 vs 8745 vs 8256 vs 8617 vs 8107 vs 8013 15%

Execution times (ms) for various optimizations on programs with increasing input size.
Fig. 13. Preliminary Experimental Results

Consider a rule r with guard g, a comprehension head constraint M : i and another
head constraint C : j with i and j unifiable. If guards g is satisfiable only for some
particular partitions of i and j, we call r a comprehension selective rule. Our abstract
machine will not necessary be able to identify this partitioning: suppose that a join
ordering executes j before i, then the join task FilterHead i j always forces all con-
straints that can match either with i or j to be in j. The abstract matching machine is
complete for CHRcp rules that are non-selective on comprehensions.

Theorem 3 (Completeness of the CHRcp Abstract Matching Machine). Let
r be any CHRcp rule that is non-selective on comprehension rule heads. Let its head
constraints be C : i, ~Ha, ~Hm and ḡ with ~J = compileRuleHead(C : i, ~Ha, ~Hm, ḡ). If
〈A#n; ~J ; Ls〉 B 〈~J[0]; 1;∅; ·;∅〉 �∗lhs ⊥ for a constraint store Ls and an active
constraint A#n, then there exists no applicable rule instance of r from Ls .

9 Prototype and Preliminary Empirical Results
In this section, we report preliminary experimental results of our CHRcp implementa-
tion. We have implemented a prototype (available for download at https://github.
com/sllam/chrcp) that utilizes a source-to-source compilation of CHRcp pro-
grams: our compiler is written in Python and translates CHRcp programs into a se-
quence of join orderings. Then, it generates C++ code that implements multiset rewrit-
ing as specified by the operational semantics of CHRcp . To support unifiability analysis
for constraint monotonicity (Section 4.1), we have deployed a conservative implemen-
tation of the relation test routine vunf , discussed in [9].

We have conducted preliminary experiments aimed at assessing the performance
of standard CHR programs (without comprehension patterns), CHRcp programs with
comprehension patterns and also to investigate the effects of the optimizations described
in this paper: OJO optimized join ordering (Section 6), Bt bootstrapping of active
comprehension head constraints (Section 5.2), Mono incremental storage for mono-
tone constraints (Section 4.1) and Uniq non-unifiability test for uniqueness enforcement

18

https://github.com/sllam/chrcp
https://github.com/sllam/chrcp

(Section 5.3). When OJO is omitted, join ordering are of arbitrary matching ordering
(e.g., textual order). When Bt is omitted, an active comprehension pattern aggressively
collects all matching constraints and filters non-matches away in later stages of the join
ordering execution. When Mono is omitted, all goals are treated as eager goals, hence
eagerly stored and forsaking any opportunity of incremental processing. Finally, when
Uniq is omitted, join ordering produced conservatively (exhaustively) include unique-
ness enforcement tasks for each pairs of rule head constraints. Optimization OJO is
not specific to comprehension patterns: we use it to investigate the performance gains
for programs with comprehension patterns relative to standard CHR variants. All other
optimizations are specific to comprehension patterns, and hence we do not anticipate
any performance gains for standard CHR programs. We have analyzed performance
on three CHRcp programs of varying sizes (refer to [8] for codes): swap is the swap-
ping data example (Section 2) with input size (s, d) where s is number of swaps and
d is number of data constraints. GHS is a simulation of the GHS distributed minimal
spanning tree algorithm with input sizes (v, e) where v is number of vertices and e is
number of edges. Finally, HQSort is a simulation of the hyper-quicksort algorithm with
input sizes (n, i) where n is number of nodes and i number of integers in each node.

Figure 13 displays our experimental results. All experiments were conducted on an
Intel i7 quad-core processor with 2.20 GHz CPUs and 4 Gb of memory. All execution
times are averages from ten runs of the same experiments. The column Orig contains
results for runs with all optimizations turned off, while All contains results with all opti-
mizations. In between, we have results for runs with optimized join ordering and at least
one optimization specific to comprehension patterns. For Orig and +OJO , we show
two values, n vs m, where n is the execution time for the program implemented with
standard rules and m for code using comprehension patterns. Relative gains demon-
strated in Orig and +OJO comes at no surprise: join ordering and indexing benefit
both forms of programs. For the Swap example, optimization +Uniq yields the largest
gains, with +Bt for GHS . +Mono yields the least gains across the board and we be-
lieve that this is because, for programs in this benchmark, constraints exclusively appear
as atomic constraint patterns or in comprehension patterns. The last column shows the
speedup of the CHRcp code with all optimizations turned on w.r.t. the standard CHR
code with join ordering. Our experiments, although preliminary, show very promising
results: comprehensions not only provide a common abstraction by reducing code size,
but, maybe more surprisingly, we get significant performance gains over CHR.

10 Related Work

Compilation optimization for CHR has received a lot of attention. Efficient imple-
mentations are available in Prolog, HAL [6], Java [13] and even in hardware (via
FPGA) [12]. Join-ordering in pure CHR are extensively studied in [4,6]. The mul-
tiset matching technique implemented in these systems are based on the LEAPS al-
gorithm [1]. Our work implements a variant of this algorithm, augmented to handle
matching of comprehension patterns. These systems utilize optimization techniques
(e.g., join ordering, index selection) that resemble query optimization in databases. The
main difference is that in the multiset rewriting context we are interested in finding one
match, while relational queries return all matches. Two related extensions to CHR have
been proposed: negated head constraints allows encoding of a class of comprehension

19

patterns[14], while an extension that allows computation of limited form of aggregates
is discussed in [11]. Like the present work, both extensions introduce non-monotonicity
into the semantics. By contrast, we directly address the issue of incrementally process-
ing of constraints in the presence of non-monotonicity introduced by comprehension
patterns. The logic programming language LM (Linear Meld) [2] offers features like
aggregates and comprehension patterns, that are very similar to our work here. By con-
trast, comprehension patterns discussed here are more generalized: aggregates in LM
can be expressed in CHRcp as term-level comprehension and reduce operations.

11 Conclusion and Future Works

In this paper, we introduced CHRcp , an extension of CHR with multiset comprehen-
sion patterns. We highlighted an operational semantics for CHRcp , followed by a lower-
level compilation scheme into join orderings. We defined an abstract machine that ex-
ecutes these join orderings, and proved its soundness with respect to the operational
semantics. We have implemented a prototype CHRcp system and have demonstrated
promising results in preliminary experimentation. In future work, we intend to further
develop our prototype implementation of CHRcp by investigating the possibility of
adapting other orthogonal optimization techniques found in [6,13,12]. Next, we intend
to expand on our empirical results, testing our prototype with a larger benchmark and
also testing its performance against other programming frameworks. We also intend to
extend CHRcp with some result form prior work in [10].

References
1. D. Batory. The LEAPS Algorithm. Technical report, University of Texas at Austin, 1994.
2. F. Cruz, R. Rocha, S. Copen Goldstein, and F. Pfenning. A linear logic programming lan-

guage for concurrent programming over graph structures. CoRR, abs/1405.3556, 2014.
3. L. De Koninck, T. Schrijvers, and B. Demoen. User-definable rule priorities for chr. In

PPDP’07, PPDP ’07, pages 25–36, New York, NY, USA, 2007. ACM.
4. L. De Koninck and J. Sneyers. Join ordering for constraint handling rules. In CHR, 2007.
5. G. J. Duck, P. J. Stuckey, M. Garcia de la Banda, and C. Holzbaur. The Refined Operational

Semantics of Constraint Handling Rules. In ICLP’04, pages 90–104. Springer, 2004.
6. C. Holzbaur, M. J. Garcı́a de la Banda, P. J. Stuckey, and G. J. Duck. Optimizing compilation

of constraint handling rules in HAL. CoRR, cs.PL/0408025, 2004.
7. E. S. L. Lam and I. Cervesato. Constraint Handling Rules with Multiset Comprehension

Patterns. In CHR’14, 2014.
8. E. S. L. Lam and I. Cervesato. Optimized Compilation of Multiset Rewriting with Compre-

hensions (Full-Version). Technical Report CMU-CS-14-119, Carnegie Mellon, June 2014.
9. E. S. L. Lam and I. Cervesato. Reasoning about Set Comprehension. In SMT’14, 2014.

10. E.S.L. Lam and I. Cervesato. Decentralized Execution of Constraint Handling Rules for
Ensembles. In PPDP’13, pages 205–216, Madrid, Spain, 2013.

11. J. Sneyers, P. V. Weert, T. Schrijvers, and B. Demoen. Aggregates in Constraint Handling
Rules. In ICLP’07, pages 446–448, 2007.

12. A. Triossi, S. Orlando, A. Raffaetà, and T. W. Frühwirth. Compiling CHR to parallel hard-
ware. In PPDP’12, pages 173–184, 2012.

13. P. Van Weert, T. Schrijvers, and B. Demoen. K.U.Leuven JCHR: a user-friendly, flexible and
efficient CHR system for Java. In CHR’05, pages 47–62, 2005.

14. P. V. Weert, J. Sneyers, T. Schrijvers, and B. Demoen. Extending CHR with Negation as
Absence. In CHR’06, pages 125–140, 2006.

20

	Optimized Compilation of Multiset Rewriting with Comprehensions

