
Programmable Orchestration of Time-Synchronized
Events Across Decentralized Android Ensembles

Edmund S. L. Lam Iliano Cervesato Ali Elgazar
Carnegie Mellon University Qatar

Email: {sllam, iliano, aee}@cmu.edu

Abstract—Orchestrating a time sensitive computation across
an ad hoc ensemble of Android devices is surprisingly challeng-
ing in spite of the OS’s support for automated network time
synchronization. In fact, the lack of access to programmatic
nor end-user control pushes the responsibility of implementing
fine-grained time synchronization to the application development
level. In this paper, we extend CoMingle, a distributed logic
programming framework designed for orchestrating Android en-
sembles, with explicit time annotations and built-in network time
synchronization support. The result is a powerful programmable
orchestration framework for developing apps that exhibits time-
synchronized events across an ensemble of Android devices.

I. INTRODUCTION

In spite of standard network time services such as NTP,
NITZ and GPS installed by default to automatically synchro-
nize local clocks, an ad hoc collection of Android mobile
devices often has members that are mutually out-of-sync by
seconds, sometimes minutes — this is due to time drift,
faulty software/hardware or infrequent syncing. This makes
it extremely challenging to implement mobile applications
that rely on tightly time-synchronized events across multiple
Android devices. And this is not likely to change any time
soon: Google has announced that programmatic or end-user
control over network time synchronization parameters (e.g.,
manual calibration, frequency) will not be provided in standard
(non rooted) Android distributions [6]. This forces the Android
application developer to take on the responsibility of imple-
menting any needed finer-grained time synchronization. Time
synchronization across distributed systems is a well-studied
problem [12], [9], [14] and, in the context of sensor networks,
numerous practical synchronization algorithm are available
(e.g., [3], [5], [13]). However, deploying such specialized
solutions in each application is tedious and time consuming.

In this paper, we develop a high-level programmable or-
chestration mechanism that allows application developers to
express time-synchronized events and execute them across
an ensemble of Android devices. This approach extends
CoMingle [11] with time annotations that express distributed
timing requirements over multiple devices. CoMingle is a
programming framework aimed at simplifying the development
of distributed applications across an ensemble of Android
devices. To support this new language construct, the CoMingle
runtime is augmented to seamlessly synchronize devices in
the ensemble. This provides developers with the means of
rapidly programming complex communication patterns that
orchestrate time-synchronized events across devices. Doing so
lowers the technical bar to developing Android applications
that feature time-synchronized events, especially UI events that

users of devices in close proximity to each other can observe.
Altogether, this papers makes the following contributions:

• We define an extended version of CoMingle that introduces
time annotations to the language and expresses timing
obligations in its semantics.

• We show how timed events specified in CoMingle can be
synchronized using traditional time-synchronization proto-
cols and integrate a simplified instance of TPSN [5] into
the CoMingle runtime system. This approach works for
any collection of Android devices.

• We show two proof-of-concept distributed Android appli-
cations that utilize time-synchronized events orchestrated
by CoMingle. The source code and pre-compiled Android
package are available at https://github.com/sllam/comingle.

The rest of the paper is organized as follows: we introduce
CoMingle through an example in Section II and then formally
in Section III. Section IV describes our time synchronization
scheme, while in Section V we present two case studies that
use synchronized events. We discuss related work in Section VI
and conclude in Section VII.

II. AN EXAMPLE

Drag Racing is a simple multi-player game inspired by
Chrome Racer [7]. A number of players compete to reach
the finish line of a linear car racing track. The device of
each player shows a distinct segment of the track, and the
players advance their car by tapping on their screen. The initial
configuration for a three-player instance is shown in Figure 1.
Figure 1 also shows the CoMingle program that orchestrates
the Drag Racing game. In CoMingle, devices are identified by
means of a location and a piece of information held at location
` is represented as a located fact of the form [`]p(~t) where
p is a predicate name and ~t are terms. A CoMingle program
consists of a set of rules, each of the form r :: Hp\Hs (B.
Such a rule describes a possible transformation of the state of
the ensemble: if the ensemble contains located facts matching
Hp and Hs, the application of the rule replaces the facts
identified by Hs with the facts specified by B. The expressions
Hp and Hs are called heads of the rule and B is its body.
Auxiliary computation is carried out in an optional where
clause. See Section III for a detailed definition.

An initial configuration such as the one in Figure 1 is
generated when rule init is executed. Its head is the fact
[I]initRace(Ls), where node I holds the initial segment
of the track and Ls lists all locations participating in the
game (including I). Several actions need to take place at

1 rule init :: [I]initRace(Ls)
2 --o {[A]next(B)|(A,B)<-Cs}, [E]last(),
3 {[P]all(Ps), [P]at(I) | P<-Ps},
4 {[P]renderTrack(Ls),[I]has(P)|P<-Ps}
5 where (Cs,E) = makeChain(I,Ls),
6 Ps = list2mset(Ls).
7 rule start :: [X]all(Ps) \ [X]stRace()
8 --o {[P]release()|P<-Ps}.
9 rule tap :: [X]at(Y) \ [X]sendTap()

10 --o [Y]recvTap(X).
11 rule exit :: [X]next(Z)\[X]exit(Y),[Y]at(X)
12 --o [Z]has(Y),[Y]at(Z).
13 rule win :: [X]last()\[X]all(Ps),[X]exit(Y)
14 --o {[P]decWinner(Y)|P<-Ps}.

Fig. 1. Drag Racing, a racing game inspired by Chrome Racer

initialization time, all implemented by the body of init.
First, the participating locations need to be arranged into
a linear chain starting at I. This is achieved by the line
(Cs,E) = makeChain(I,Ls) where Cs is instantiated
to a multiset of logically adjacent pairs of locations and E
to the end of the chain. The line Ps = list2mset(Ls)
converts the list Ls into a multiset Ps. Second, each node
other than E needs to be informed of which location holds
the segment of the track after it, while E needs to be told
that it has the finishing segment: this is achieved by the ex-
pressions {[A]next(B)|(A,B)<-Cs} and [E]last(),
respectively. The expression {[A]next(B)|(A,B)<-Cs}
is a comprehension pattern and stands for a multiset of
facts[A]next(B) for each pair (A,B) in the multiset Cs.
Third, each location (P<-Ps) needs to be informed of who
the players are ([P]all(Ps)) and of the fact that its car
is currently at I ([P]at(I)), and it needs to be instructed
to render the lane of all players ([P]renderTrack(Ls)).
Fourth, location I needs to be instructed to draw the car of all
the players ([I]has(P)).

Underlined predicates (e.g., initRace) identify trigger
facts and act as interfaces from a device’s local compu-
tation. Specifically, a fact [`]initRace(Ls) is entered
into the rewriting state by a local program at ` and used
to trigger the initialization of the game. Trigger facts are
only allowed to appear in the heads of a rule. Dually, facts
like [`]renderTrack(Ls) and [`]has(P) are actuator
facts, generated by the rewriting process for the purpose of
starting local computations at `. We underline actuator facts
with dashed lines. Each actuator predicate is associated with
a local function which is invoked when the rewriting engine
deposits an instance in the state (actuators can appear only
in a rule body). For instance, the actuator [`]has(P) is
concretely implemented as a Java callback function that calls
`’s local UI thread to render player P’s sprite on `’s screen.

At this point the game has been initialized, but it has

not started yet. The race starts the first time a player X taps
his/her screen. This has the effect of depositing the trigger
[X]stRace() in the rewriting state, which enables rule
start. Its body broadcasts the actuator [P]release()
to every node P, which has the effect of informing P’s local
runtime that subsequent taps will cause its car to move forward.
This behavior is achieved by rule tap, which is triggered
at any node X by the fact [X]sendTap(), generated by
the application runtime every time X’s player taps his/her
screen. The trigger [X]exit(Y) is generated when the car
of player Y reaches the right-hand side of the track segment
on X’s device. If the track continues on player Z’s screen
([X]next(Z)), rule trans hands Y’s car over to Z by
ordering Z to draw it on his/her screen ([Z]has(Y)) and by
informing X of the new location of his/her car ([Y]at(Z)).
Fact [Y]at(X) gets consumed. If instead X holds the fi-
nal segment of the track ([X]last()) when the trigger
[X]exit(Y) materializes, Y’s victory is broadcast to all
participating locations ({[P]decWinner(Y)|P<-Ps}).
Time-synchronized Start: While the implementation of Drag
Racing in Figure 1 runs reasonably well, it does not guarantee
that the actuator release() will be processed at the same
time on each device,1 which may give some players an advan-
tage. We address this concern by introducing time annotations
in body facts to constrain when they should be acted upon.
Rule start could then be updated as follows (in yellow):

1 rule start :: [X]all(Ps) \ [X]stRace()
2 --o {[P]release()@T|P<-Ps}
3 where T=now()+500.

Each participating device P is sent an event release()@T.
The argument T is a precise time in the future where the
actuator release() shall be processed. Time T is set as the
current time now() at location X plus a small delay (500ms),
giving enough time for all messages to be delivered to each
device P in Ps. Now, the local clock at P may be out of
sync relative to X (by seconds in our experiments). Therefore,
having each P process release() at time T (on X) requires
them to compute a local time offset relative to X (or any
common time reference). Section IV discusses in details a
synchronization mechanism to achieve this effect.

While precise time synchronization is not critical for Drag
Racing, Section V examines two applications whose function-
ality relies on events being tightly synchronized across devices.

III. COMINGLE WITH EXPLICIT TIME

We now describe the abstract semantics of CoMingle. We
write o for a multiset of syntactic objects o. We denote the
extension of a multiset o with an object o as “o, o”, with ∅
indicating the empty multiset. We also write “o1, o2” for the
union of multisets o1 and o2. We write ~o for a tuple of o’s and
[~t/~x]o for the simultaneous replacement within object o of all
occurrences of variable xi in ~x with the corresponding term
ti in ~t. When traversing a binding construct (e.g., a compre-
hension pattern), substitution implicitly α-renames variables as
needed to avoid capture. In the following, updates to the syntax
and semantics of CoMingle [11] are highlighted in yellow.

1With the implementation in Figure 1, time difference between invocations
of the actuators, due to the small time delays in LAN or WiFi-direct
communications, are indeed occasionally observable.

Locations: ` Terms: t Guards: g Time expressions: c Standard / trigger / actuator predicates: ps, pt, pa

Standard facts Fs ::= [`]ps(~t) Triggers Ft ::= [`]pt(~t) Actuators Fa ::= [`]pa(~t)

Facts f, F ::= Fs | Ft | Fa Events E ::= Fa@c | Fs@c

Head atoms h ::= Fs | Ft
Head expressions H ::= h | *h | g+~x∈t
CoMingle rule R ::= H \ H|g (B

Body atoms b ::= Fs | Fa | E
Body expressions B ::= b | *b | g+~x∈t
CoMingle program P ::= R

Rewriting state St ::= F Local state: [`]ψ Application state Ψ ::= [`]ψ CoMingle state Θ ::= 〈St ; Ψ; E 〉

Fig. 2. Abstract Syntax and Runtime Artifacts of CoMingle with Time Annotations

A. Abstract Syntax

Figure 2 defines the abstract syntax of CoMingle. The
concrete syntax used in the various examples in this paper
maps to this abstract syntax. Locations ` are names that
uniquely identify computing nodes, and the set of all nodes
participating in a CoMingle computation is called an ensemble.
At the CoMingle level, computation happens by rewriting
located facts f of the form [`]p(~t). We categorize predicate
names p into standard, trigger and actuator, indicating them
with ps, pr and pa, respectively. This induces a classification
of facts into standard, trigger and actuator facts, denoted fs,
ft and fa. Facts also carry a tuple ~t of terms. Ground facts,
which do not contain free variables, are denoted Fs, Fa and
Ft. The abstract semantics of CoMingle is largely agnostic to
the specific language of terms. An event E is an actuator fa@c
or standard fact fs@c annotated with a time expression c.

Computation in CoMingle happens by applying rules of
the form Hp \ Hs|g (B. We refer to Hp and Hs as
the preserved and the consumed head of the rule, to g as its
guard and to B as its body. The heads and the body of a
rule consist of atoms f and of comprehension patterns of the
form *f | g+~x∈t. An atom f is a located fact [`]p(~t) that
may contain variables in the terms ~t or even as the location `.
Atoms in rule heads are either standard or trigger facts (fs or
ft), while atoms in a rule body are standard or actuator facts or
events (fs or fa or E). Guards in rules and comprehensions
are Boolean-valued expressions constructed from terms and
are used to constrain the values that the variables in a rule
can assume. Just like for terms we keep guards abstract,
writing |= g to express that ground guard g is satisfiable.
A comprehension pattern *f | g+~x∈t represents a multiset of
facts that match the atom f and satisfy guard g under the
bindings of variables ~x that range over t, a multiset of tuples
called the comprehension range. The scope of ~x is the atom
f and the guard g. We implicitly α-rename bound variables to
avoid capture. A CoMingle program is a collection of rules.

The concrete syntax of CoMingle is significantly more
liberal than what we just described. In particular, components
Hp and g can be omitted if empty. We concretely write a
comprehension pattern *f | g+~x∈t as {f | ~x -> t. g} in
rule heads and {f | ~x <- t. g} in a rule body, where
the direction of the arrow acts as a reminder of the flow
of information. Comprehensions with the same range can be
combined. Terms in the current prototype include standard
base types such as integers and strings, locations, term-level
multisets, and lists. Its guards are relations over such terms
(e.g., equality and x < y) and user-defined Boolean functions.
Some guards are written as where clauses.

B. Overview of the Abstract Semantics

We describe the computation of a CoMingle system by
means of a small-step transition semantics. Its basic judgment
has the form P BΘ 7→ Θ′ where P is a program, Θ is a state
and Θ′ is a state that can be reached in one (abstract) step
of computation. A state Θ has the form 〈St ; Ψ;E〉. The first
component St is a collection of ground located facts [`]p(~t)
and is called the rewriting state of the system. CoMingle
rules operate exclusively on the rewriting state. The second
component, the application state Ψ, is the collection of the
local states [`]ψ of each computing node ` and captures the
notion of state of the underlying computation model (the Java
virtual machine in our Android-based prototype). As we will
see, a local computation step transforms the application state Ψ
but can also insert triggers into the rewriting state and consume
actuators from it. These run-time artifacts are formally defined
at the bottom of Figure 2. The third component, the scheduled
events E, is a collection of events that await execution. In this
semantics, the local time at ` is retrieved by the meta-level
operation clock(`). In this paper, we focus on modeling the
fulfillment of time obligations, ensuring the timely execution
of the scheduled events.

In Section III-C, we introduce auxiliary judgments and in
Section III-D we combine them into the overall abstract seman-
tics of CoMingle, defined by the state transition P BΘ 7→ Θ′

(see Figure 6 for a preview). The CoMingle prototype is based
on a concrete semantics [10] that efficiently implements the
abstract semantics in this section.

C. Matching, Processing Rule Body and Time Obligations

The application of a CoMingle rule Hp \ Hs | g (B
to a state 〈St ; Ψ;E〉 involves two main operations: identifying
fragments of the rewriting state St that match the rule heads
Hp and Hs, and replacing Hs in St with the corresponding
instance of the body B. We now extend the formalization of
these operations in [10] to account for time obligations.

Matching Rule Heads: Let H be a (preserved or consumed)
rule head without free variables. Intuitively, matching H
against a store St means splitting St into two parts, St+

and St−, and checking that H matches St+ completely. The
latter is achieved by the judgment H , St+ defined in
the top part of Figure 3. Rules lmset-∗ partition St+ into
fragments to be matched by each atom in H: plain facts F
must occur identically (rule lfact) while for comprehension
atoms *f | g+~x∈ts the state fragment must contain a distinct
instance of f for every element of the comprehension range
ts that satisfies the comprehension guard g (rules lcp∗).

H , St H , St ′

H,H , St ,St ′
(lmset1)

∅ , ∅
(lmset2)

[~t/~x]F ′ , F |= [~t/~x]g *F ′ | g+~x∈ts , St

*F ′ | g+~x∈~t,ts , St , F
(lcp1)

*F | g+~x∈∅ , ∅
(lcp2)

F , F
(lfact)

H ,¬ St H ,¬ St

H,H ,¬ St
(l¬mset1)

∅ ,¬ St
(l¬mset2)

F 6v *F ′ | g+~x∈ts *F ′ | g+~x∈ts ,¬ St

*F ′ | g+~x∈ts ,¬ St , F
(l¬cp1)

*F | g+~x∈ts ,¬ ∅
(l¬cp2)

F ,¬ St
(l¬fact)

Subsumption:
F v *F ′ | g+~x∈ts iff F = θF ′ and |= θg for some θ = [~t/~x]

Fig. 3. Matching a Rule Head: H , St H ,¬ St

In CoMingle, comprehension patterns must match maximal
fragments of the rewriting state. Therefore, no comprehension
pattern should match any fact in St−. This check is captured
by the judgment H ,¬ St− in the bottom part of Figure 3.
Rules l¬mset∗ test each individual atom and rule l¬fact ignores
facts. Rules l¬cp∗ deal with comprehensions *f | g+~x∈ts : they
check that no fact in St− matches any instance of f while
satisfying g.

Processing Rule Bodies: Applying a CoMingle rule involves
extending the rewriting state with the facts and events corre-
sponding to its body. This operation, captured by the judgment
B � 〈St ;E〉, is specified in Figure 4 for a closed body
B. Rules rmset∗ go through B. Atomic facts F are added
immediately to St (rule rfact) while events E are added to E
(rule revent). Comprehension atoms *f | g+~x∈ts need to be
unfolded (rules rc∗): for every item ~t in ts that satisfies the
guard g, the corresponding instance [~t/~x]f is added to either
St or E; instances that do not satisfy g are discarded.

Fulfilling Time Obligations: Our timed extension of
CoMingle needs to make scheduled events available for rewrit-
ing and actuation when their time has come. The judgment
Ψ `δ E, defined in Figure 5, supports this behavior by
checking that each event [`]f@c in E is scheduled for exe-
cution at a future time, according to location `’s local clock
(clock(`) < c).

clock(`) < c Ψ, [`]ψ `δ E
Ψ, [`]ψ `δ E, [`]f@c

(δmset1)

Ψ `δ ∅
(δmset2)

Fig. 5. Time Obligation Fulfillment: Ψ `δ E

D. Abstract Semantics

Figure 6 defines the state transition P B Θ 7→ Θ′. There
are three forms of state transitions. Rules rw ev act and
rw ev std handle scheduled events [`]Fa@c and [`]Fs@c,
respectively. In rw ev act, an actuator event [`]Fa@c is

B � 〈St ; E 〉 B � 〈St ′; E′ 〉

B,B � 〈St ,St ′; E,E′ 〉
(rmset-1)

∅� 〈∅; ∅〉
(rmset2)

F � 〈F ; ∅〉
(rfact)

E � 〈∅;E〉
(revent)

|= [~t/~x]g [t/~x]b� 〈F ; E 〉 *b | g+~x∈ts � 〈St ; E
′ 〉

*b | g+~x∈~t,ts � 〈F ,St ; E,E
′ 〉

(rc1)

6|= [~t/~x]g *b | g+~x∈ts � 〈St ; E 〉

*b | g+~x∈~t,ts � 〈St ; E 〉
(rc2)

*b | g+~x∈∅ � 〈∅; ∅〉
(rc3)

Fig. 4. Processing a Rule Body: B � 〈St ; E 〉

moved to the rewrite state St only if its time c has arrived
(c ≤ clock(`)), and similarly for standard events in rule
rw ev std. This allows the remaining rules to expect that
all events be scheduled in the future (Ψ `δ E). Because c
often refers to the time at a different location, how close that
intended time is to clock(`) depends on how tightly syn-
chronized the ensemble is, which is examined in Section IV.

Rule rw ens describes a step of computation that applies
a rule Hp \ Hs | g (B. This involves identifying a closed
instance of the rule obtained by means of a substitution θ. The
instantiated guard must be satisfiable (|= θg) and we must be
able to partition the rewriting state into three parts Stp, Sts
and St . The instances of the preserved and consumed heads
must match fragments Stp and Sts respectively (θHp , Stp
and θHs , Sts), while the remaining fragment St must be
free of residual matches (θ(Hp, Hs) ,¬ St). The rule body
instance θB is then unfolded (θB � 〈Stb;Eb〉) into Stb which
replaces Sts in the rewriting state and Eb that is added to E.
An important side condition is Ψ `δ E, which dictates that
this transition is only possible if all events E are in the future,
thereby prioritizing rules rw ev ∗.

Rewriting steps defined by rule rw ens can be interleaved
by local computations at any node `. From the point of view of
CoMingle, such local computations are viewed as an abstract
transition 〈A;ψ〉 7→` 〈ψ′; T 〉 that consumes some actuators A
located at `, modifies `’s internal application state ψ into ψ′,
and produces some triggers T . Note that an abstract transition
of this kind can (and generally will) correspond to a large
number of steps of the underlying model of computation of
node `. Rule rw loc in Figure 6 incorporates local computation
into the abstract semantics of CoMingle. Here, we write [`]A
for a portion of the actuators located at ` in the current
rewriting state — there may be others. We similarly write [`]T
for the action of locating each trigger in T at `. Rule rw loc
enforces locality by drawing actuators strictly from ` and
putting triggers back at `. In particular, local computations at a
node cannot interact with other nodes. Hence, communication
and orchestration can only occur through rewriting steps,
defined by rule rw ens. Like rule rw ens, rule rw loc applies
only if the events E are in the future (Ψ `δ E). Note that
A may be empty: a transition step taken with an empty
A corresponds to an internal computation at location ` not
initiated within the rewriting state. This includes the ticking
of the internal clock (clock(`)).

Local transitions: 〈A;ψ〉 7→` 〈T ;ψ′〉 Local Clock: clock(`)

Ψ `δ E (Hp \ Hs | g (B) ∈ P |= θg

θHp , Stp θHs , Sts θ(Hp, Hs) ,¬ St θB � 〈Stb; Eb 〉

P B 〈Stp,Sts,St ; Ψ; E 〉 7→ 〈Stp,Stb,St ; Ψ; E,Eb 〉
(rw ens)

c ≤ clock(`)

P B 〈St ; Ψ;E, [`]Fs@c〉 7→ 〈St , [`]Fs; Ψ;E〉
(rw ev std)

Ψ `δ E 〈A;ψ〉 7→` 〈T ;ψ′〉

P B 〈St , [`]A; Ψ, [`]ψ; E 〉 7→ 〈St , [`]T ; Ψ, [`]ψ′; E 〉
(rw loc)

〈Fa;ψ〉 7→` 〈T ;ψ′〉 c ≤ clock(`)

P B 〈St ; Ψ, [l]ψ;E, [`]Fa@c〉 7→ 〈St , [`]T ; Ψ, [l]ψ′;E〉
(rw ev act)

Fig. 6. Abstract Semantics of CoMingle: P B 〈St ; Ψ; E 〉 7→ 〈St ′; Ψ′; E
′ 〉

IV. IMPLEMENTING EVENT SYNCHRONIZATION

Given a set of events to be executed at some common time
c, for example {[`]Fa@c|` ∈ L}, the task of guaranteeing that
the mobile devices at locations ` ∈ L invoke their respective
instance of actuator Fa simultaneously is far from straightfor-
ward. In fact, each device will schedule Fa at time c based
on its local clock which may be off (sometimes by seconds)
rather than a universal time. Android provides services such
as NITZ or NTP to synchronize time and yet skews of one to
two seconds are not uncommon. Google prevents third party
apps from resetting system clocks, citing security concerns [6].
Therefore, in order to synchronize events, each device in an
ensemble needs to determine the offset of its internal clock
relative to some common referential time. We review two
solutions we have implemented to compute this offset on each
device.

Network Time Protocol (NTP) Synchronization: A solution
to this problem is to have each device seek out a common
referential time from some time synchronization service and
compute the time offset of its own internal clock from this
referential time. For instance, an initial prototype of our
CoMingle runtime utilizes an open-source NTP library (specif-
ically, Apache Commons Net library) for this purpose. Each
device retrieves a referential time stamp via an NTP exchange
and compares it with its own internal clock to compute its local
time offset. Using NTP, however, imposes the requirement that
each device of the ensemble have access to the Internet.

Local Referential Time Synchronization: To orchestrate event
synchronization on decentralized mobile networks (e.g., WiFi-
direct groups), we have implemented an alternative: rather than
seeking an NTP referential time, the devices of the ensemble
offset their internal clocks based on the local time of one of
them. In order for each node to obtain a referential time from
this node, we provide a synchronization protocol that accounts
for propagation delays in the network. Synchronization proto-
cols for sensor networks (e.g., [3], [5]) are directly applicable.
We have implemented a simplified variant of the Timing-
sync Protocol for Sensor Networks (TPSN) [5] for single-hop
networks. This is sufficient for many applications as the current
CoMingle supports only WiFi-direct or LAN connections,
which correspond to single-hop network architectures.

The diagram in Figure 7 illustrates the simplified TPSN
protocol we implemented to compute time offset. A device
within the ensemble is chosen to act as the referential time
server. All other devices are referential time clients. In this
scheme, the clients compute their local time offset (δoffset)

through the following steps: (1) A client sends a message,
identified by a randomly generated integer n, to the server
indicating its intent to synchronize, and records the time T1
when this request is sent. (2) Upon receiving this request, the
server makes a note of the time T ′2 it receives the request
and the time T ′3 it sends its response back to the client. The
response contains these two time stamps, along with n. (3)
Upon receiving the server’s response, the client notes the time
T4. The offset time of the client (denoted δoffset) is ideally
computed by comparing T1 with the hypothetical T ′1, the time
at the server when the client read T1. We approximate T ′1
by offsetting T ′2 with the propagation delay (δDelay), which
can be estimated from the round trip time of the request and
response. To make these estimates more reliable, our current
implementation has each member compute the median of the
time offsets over a number of synchronization polls. This sim-
ple scheme provides a synchronization protocol that performs
well for the applications we have considered so far (most
events were synchronized well within an imperceptible 10ms).
In the future, more sophisticated protocols (e.g., [3], [13]) can
be implemented to provide more precise time synchronization
to the CoMingle runtime.

We have augmented the CoMingle runtime with routines
that provide this fine-grained time synchronization. These time
synchronization routines are activated when the CoMingle
compiler determines the presence of time annotations in the
source CoMingle program. Figure 8 illustrates our CoMingle
framework (see also [11]). In our current implementation, if
the devices are connected via WiFi-direct, the referential time
server is the WiFi-direct group owner. If they are connected
via a local area network, this role is assumed by the device
which initiated the application. The default setting is for each

Server

Client
n

n,
T
′
2
, T
′
3

δDelay δDelay

δProc

T1

T ′
2 T ′

3

T4

T ′
1

δProc = T ′3 − T ′2 δDelay =
(T4 − T1)− δProc

2

δOffset = T1 − T ′1 = T1 − (T ′2 − δDelay)

Fig. 7. Simplified TPSN

Fig. 8. CoMingle with Time Synchronization

client device to poll the server for referential time at the point
of its entry into the CoMingle ensemble. Our CoMingle library
includes a set of APIs to allow developers to control the period
and frequency of such polling during the life-cycle of the
CoMingle runtime.

V. CASE STUDIES

In this section, we show two examples of applications that
rely on time annotations to synchronize distributed events.

A. Musical Shares is a CoMingle program that plays a musical
score across an ensemble of participating Android devices. The
node I that initiates the performance is given a sequence Ns
of musical notes to play and an undirected graph (Vs,Es)
which describes how the notes are to be distributed across the
ensemble. In particular, starting from a source node I ∈ Vs ,
the musical score Ns is propagated across the edges of the
graph. Each node (device) receives a subsequence Ns ′ of Ns ,
keeps the head N of Ns ′, records the position of N in the
original score, and sends the tail of Ns ′ to all its outgoing
edges. If a node has no outgoing edge, the tail of the sequence
is returned to I . For simplicity, we assume that each note is to
be played for one second at a time equal to its position in the
score (if variable tempo is desired, each note can be distributed
with information on how long it should be played).

Figure 9 displays the CoMingle program that orchestrates
Musical Shares. Rule dist on lines 1–4 initiates the dis-
tribution of a musical score Ns from source location I,
based on a graph (Vs,Es) over the ensemble. The trigger
fact [I]dist(Ns,Vs,Es) initiates this process, in which
the following happens: (1) source location I starts off the
distribution with trans(Ns,0) and records all the locations
involved (all(Vs)), (2) all nodes in Vs are informed that I
is the source ({[V]source(I)|V<-Vs}), and (3) the edges
of the graph (Vs,Es) are distributed across the ensemble
({[F]edge(T)|(F,T)<-Es}). Fact [X]trans(Ns,P)

1 rule dist :: [I]dist(Ns,Vs,Es)
2 --o [I]trans(Ns,0), [I]all(Vs),
3 {[V]source(I)|V<-Vs},
4 {[F]edge(T)|(F,T)<-Es}.
5

6 rule fwd :: {[X]edge(Y)|Y->Ys}\[X]trans(N:Ns,P)
7 | size(Ys)>0
8 --o [X]note(N,P),
9 {[Y]trans(Ns,P+1)|Y<-Ys}.

10 rule ret :: {[X]edge(Y)|Y->Ys}, [X]source(I)
11 \ [X]trans(N:Ns,P) | size(Ys)=0
12 --o [X]note(N,P), [I]trans(Ns,P+1).
13

14 rule end :: [I]source(I) \ {[_]trans([],_)},
15 {[X]trans(_:_,_)|X->Xs}
16 | size(Xs)=0 --o [I]completed().
17 rule play :: [I]all(Xs) \ [I]start(S),
18 {[X]note(N,P)|(X,N,P)->Ms,in(X,Xs)}
19 --o {[X]play(N)@(T+P*1000)|(X,N,P)<-Ms}
20 where T = now()+S.

Fig. 9. Musical Shares, Cooperative Acoustics across an Android Ensemble

encodes the partial distribution of a musical score, where Ns
is the subsequence being processed by node X and P is the
zero-indexed position of Ns from the original score. Rules
fwd, ret and end implement the distribution process: fwd
handles the case where a non-empty sequence of notes (N:Ns)
reaches the location X ([X]trans(N:Ns,P)) with out-
going edges (size(Ys) > 0). The head N of the sequence
is recorded with the index position P ([X]note(N,P))
and the rest of the sequence is propagated through all
of X’s outgoing edges ({[Y]trans(Ns,P+1)|Y<-Ys}).
Rule ret implements the case when X has no succes-
sors (size(Ys) = 0), hence the rest of the sequence
Ns is wrapped back to the source location I. Finally, rule
end implements the completion of the distribution process:
it checks that no non-empty subscore is being processed
({[X]trans(_:_,_)|X->Xs} with size(Xs)=0) and
consumes all empty subscores ({[_]trans([],_)}), and
then asserts the actuator completed(), notifying I that the
distribution phase has been completed.

Rule play is invoked by the trigger start(S)
at source I. It collects all the notes to be played
({[X]note(N,P)|(X,N,P)->Ms, in(X,Xs)}) across
all the devices in the ensemble ([I]all(Xs)) and schedules

`2

`1 `4

`3
play(A5)@T0
play(D5)@T0 + 4s

play(B5)@T0 + 1s
play(G4)@T0 + 3s

play(B5)@T0 + 1s
play(G4)@T0 + 3s

play(G5)@T0 + 2s

State of the ensemble after executing:

[`1]dist([A5, B5, G5, G4, D5], V s, Es) followed by [`1]start(T0)
V s = {`1, `2, `3, `4}, Es = {(`1, `2), (`1, `3), (`2, `4), (`3, `4)}

Fig. 11. An Instance of Musical Shares

1 rule init :: [I]initialize(Ps,D)
2 --o [I]duration(D), [I]livePlayers(Cs,Ms)
3 {[P]allPlayers(Ps),[P]moderator(I)|P<-Ps},
4 {[C]notifyCitizen()|C<-Cs}, {[M]notifyMafia(Ms),[M]mafia(Ms)|M<-Ms}
5 where Ms = pick(Ps,size(Ps)/3), Cs = Ps-Ms.
6 rule start :: [I]moderator(I) \ [I]start() --o [I]transNight().
7

8 rule night :: [I]duration(D), [I]livePlayers(Cs,Ms) \ [I]transNight()
9 --o {[P]warnNight()@TimeWarn, [P]signalNight()@TimeNight | P<-Cs+Ms},

10 {[M]wakeMafia()@TimeWake | M<-Ms},
11 [I]transDay()@TimeDay, [I]checkVotes()@TimeDay
12 where TimeWarn = now()+1000, TimeNight = TimeWarn+10000,
13 TimeWake = TimeNight+5000, TimeDay = TimeNight+D.
14

15 rule day :: [I]duration(D), [I]livePlayers(Cs,Ms) \ [I]transDay()
16 --o {[M]warnMafia()@TimeWarn | M<-Ms}, {[P]signalDay()@TimeDay | P<-Cs+Ms},
17 [I]transNight()@TimeNight, [I]checkVotes()@(TimeNight-5000)
18 where TimeWarn = now()+1000, TimeDay = TimeWarn+10000, TimeNight = timeDay+D.
19

20 rule mvote :: [X]mafia(Ms) \ [X]mafiaVote(C) --o [I]vote(C).
21 rule cvote :: [X]allPlayers(Ps) \ [X]citizenVote(C) --o [I]vote(C).
22 rule tally :: [I]checkVotes(), {[I]vote(P)|P->Ps}, [I]livePlayers(Cs,Ms)
23 --o [I]livePlayers(Ms-{K},Cs-{K}), {[P]notifyDeath(K)|P<-Cs+Ms}, [I]checkEnd()
24 where K = tally(Ps).
25

26 rule end :: [I]allPlayers(Ps), [I]livePlayers(Cs,Ms), [I]checkEnd()
27 | size(Ms)>=size(Cs) or size(Ms)=0 --o {[P]notifyEnd(Cs,Ms) | P<-Ps}.

Fig. 10. Mafia, an Ensemble-Orchestrated Android Party Game

each to be played P seconds from the current time at I plus
delay of S milliseconds ([X]play(N)@(T+P*1000) with
T=now()+S).

Figure 11 shows a snapshot of the state of a four-device
Android ensemble (`1, `2, `3 and `4). In this instance, lo-
cation `1 has initiated the distribution of the musical score
[A5,B5,G5,G4,D5] across the ensemble based on the
graph (Vs,Es) shown in figure. This is followed by exe-
cuting [`1]start(S) which initiates the playing of the score
at time T = T0 + S where T0 is the current time at `1.

B. Mafia is a party game played among eight or more players.
Initially, a third of the players are secretly assigned to be
criminals in the mafia, while the rest are innocent citizens.
The game proceeds in day and night cycles: during the night,
citizens sleep while criminals roam freely but silently, deciding
on one citizen to murder. In the day, all citizens, including the
criminals (whose identities are unknown), debate on who the
mafia members are and vote on one suspect to execute. The
citizens win when all mafia criminals are killed, while the
mafia wins when the surviving mafia players outnumber the
remaining citizens. In the traditional game, one person in the
party acts as the moderator. The moderator does not participate
as a player but manages the day and night transitions, while
keeping track of the number of surviving players in each team.

In our CoMingle Mafia app, the moderator is a normal
player, but these roles do not interfere. Day to night transitions
proceed as follows: (1) 10 seconds before night time all devices
emit a warning beep, prompting players to lay down, hold
their devices firmly, face down, and with their eyes closed. (2)
Once night has arrived, all devices vibrate at the same time,
indicating that players shall fall asleep. (3) 5 seconds later, the
mafia devices vibrate once more, indicating that they can begin

their evil deeds. Night to day transitions proceed similarly, with
a 10 seconds warning buzz to notify mafia members to silently
proceed to their original positions and pretend that they have
been sleeping through the night.

Figure 10 shows the CoMingle program that orchestrates
the Mafia game. We assume that one device, I, has been
nominated as the moderator.2 Rule init initializes the game
from the trigger [I]initialize(Ps,D), where Ps is the
set of all locations (players), and D is the duration of the day
and night cycles. Players are partitioned into mafia Ms and
citizens Cs in such a way that Ms contains a third of players
Ps selected arbitrarily (Ms = pick(Ps,size(Ps)/3)),
while Cs is the rest. As the moderator, device I is issued
facts [I]duration(D) and [I]livePlayers(Cs,Ms)
to keep track of the game state. Each player
knows all players Ps and that I is the moderator
({[P]allPlayers(Ps),[P]moderator(I)|P<-Ps})
and is privately notified of its role ({[C]notify-
Citizen()|C<-Cs} and {[M]notifyMafia(Ms),
[M]mafia(Ms)|M<-Ms}).

When issued trigger start(), the moderator
starts off the night transition in rule start. Rule
night is activated by the fact [I]transNight(),
during which location I sets the warning beep event
for one second later (TimeWarn=now()+1000 and
[P]warnNight()@TimeWarn for each live player P).
On each device, the actuator warnNight calls the device
sound library to invoke a beep and the UI to render a
countdown sequence from 10 seconds. Rule night also
schedules the actual night time signal 10 seconds after the
warning actuation (TimeNight = TimeWarn+10000

2The owner of this device can still be an active player of the game.

and [P]signalNight()@TimeNight for each live
player P). The actuator signalNight invokes the
devices’ vibration module, signaling to the user that night
has arrived. The next event scheduled by this rule is
{[M]wakeMafia()@TimeWake | M<-Ms} and this
event wakes the mafia members 5 seconds after night time
started (TimeWake = TimeNight+5000). Finally the
night-to-day transition transDay() and the checking of
the votes checkVotes() are scheduled for the end of the
night (TimeDay = TimeNight+D). The latter instructs
the moderator to count the votes that will have been cast
by night’s end. The rule day implements the night to
day transition and works similarly but with the following
difference: the mafia members are given a 10-second warning
{[M]warnMafia()@TimeWarn | M<-Ms} to regain
their positions and the votes are checked 5 seconds prior to
end of the day time.

Rule mvote is where each member X of the mafia proposes
a player C to murder. It is activated by the trigger mafiaVote
and has the effect of sending its preference to the moderator
by means of the fact [I]vote(C). Rule cvote operates
similarly, but all players are allowed to cast a vote for whom
to execute. The moderator I tallies the vote in rule tally
when the fact checkVotes() appears in the rewriting state.
It collects all the votes that have been cast in the current
period ({[I]vote(P)|P->Ps}) and selects the player K to
dismiss using the local function tally. It then updates the
fact [I]livePlayers(Cs,Ms) by removing K from both
Cs and Ms — since these multisets form a partition of the
surviving players, only one of them will effectively be updated.
Finally, all live players (including K) are informed of this event
({[P]notifyDeath(K)|P<-Cs+Ms}). The rule also adds
the fact [I]checkEnd() which checks the game victory
condition for the mafia team (size(Ms)>=size(Cs)) and
the citizen (size(Ms)=0) and notifies all players of the
outcome. It also ends the game by means of the actuator
notifyEnd(Cs,Ms).

VI. RELATED WORK

To the best of our knowledge, CoMingle is the first
framework to introduce a high-level language construct to
orchestrate time-synchronized events across Android mobile
devices. However, it draws from work on distributed and
parallel programming languages for decentralized systems,
which we now review.

CoMingle was greatly influenced by Meld [1], a logic
programming language initially designed for programming dis-
tributed ensembles of communicating robots. It used the Blinky
Blocks platform [8] as a proof of concept to demonstrate
simple ensemble programming behaviors. Meld was based on
a variant of Datalog extended with sensing and action facts and
also permits a form of time annotation. However, such time
annotations are only used for delaying internal computations,
not synchronizing distributed events across the ensemble. Re-
cent refinements [2] extend Meld with comprehension patterns
and linearity, but refocused it on distributed programming of
multicore architectures.

Microsoft’s TouchDevelop [15] is a development envi-
ronment for the rapid prototyping of Android applications.

Like CoMingle, TouchDevelop provides a high-level mobile
programming abstraction. However, it mainly focuses on ap-
plications that run locally on a device with cloud service
integration and touch screen programming interfaces. Device-
to-device coordination is not considered.

CoMingle is also inspired by CHR [4], a logic program-
ming language targeting traditional constraint solving prob-
lems. Prior to this work, CoMingle extended it with multiset
comprehension, explicit locations, triggers and actuators. This
papers added time annotations to the list.

VII. FUTURE WORK AND CONCLUSION

We have extended the CoMingle language with time
annotations. This enable CoMingle to orchestrate time-
synchronized events across an ensemble of Android devices.
We have described its abstract semantics and implemented
a prototype that uses a simplified variant of the TPSN time
synchronization protocol. We have tested it on two distributed
Android applications that showcase this new feature. In the
future, we intend to extend the CoMingle network middleware
to accommodate heterogeneous multi-hop networks. This re-
quires more advanced time synchronization protocols (e.g., [3],
[13]). We also intend to scale up our experiments to stress-test
the CoMingle runtime in maintaining timing requirements of
its applications.

REFERENCES

[1] M.P. Ashley-Rollman, P. Lee, S.C. Goldstein, P. Pillai, and J.D. Camp-
bell. A Language for Large Ensembles of Independently Executing
Nodes. In ICLP’09, Pasadena, CA, 2009.

[2] F. Cruz, R. Rocha, S.C. Goldstein, and F. Pfenning. A linear logic pro-
gramming language for concurrent programming over graph structures.
In ICLP’14, Vienna, Austria, 2014.

[3] J. Elson, L. Girod, and D. Estrin. Fine-grained network time syn-
chronization using reference broadcasts. SIGOPS Oper. Syst. Rev.,
36(SI):147–163, 2002.

[4] T Frühwirth and F. Raiser. Constraint Handling Rules: Compilation,
Execution and Analysis. BoD, 2011.

[5] S. Ganeriwal, R. Kumar, and M.B. Srivastava. Timing-sync Protocol
for Sensor Networks. In SenSys’03, pages 138–149, 2003.

[6] Google. Android Issue Tracker: User App cannot set System Time.
https://code.google.com/p/android/issues/detail?id=4581, 2013.

[7] Google. Chrome Racer, A Chrome Experiment.
http://www.chrome.com/racer, 2013.

[8] B.T. Kirby, M. Ashley-Rollman, and S.C. Goldstein. Blinky blocks: A
physical ensemble programming platform. In CHI’11, 2011.

[9] H. Kopetz and W. Ochsenreiter. Clock Synchronization in Distributed
Real-time Systems. IEEE Trans. Comput., 36(8):933–940, 1987.

[10] E.S.L. Lam and I. Cervesato. Optimized Compilation of Multiset
Rewriting with Comprehensions. In APLAS’14, pages 19–38, 2014.

[11] E.S.L. Lam, I. Cervesato, and N. Fatima. Comingle: Distributed
logic programming for decentralized mobile ensembles. In Coordi-
nation’2015, pages 51–66, 2015.

[12] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed
System. Commun. ACM, 21(7):558–565, July 1978.

[13] M. Maróti, B. Kusy, G. Simon, and Á. Lédeczi. The Flooding Time
Synchronization Protocol. In SenSys’04, pages 39–49, 2004.

[14] D.L. Mills. Internet Time Synchronization: the Network Time Protocol.
IEEE Transactions on Communications, 39:1482–1493, 1991.

[15] N. Tillmann, M. Moskal, J. de Halleux, and M. Fahndrich. Touchde-
velop — programming cloud-connected mobile devices via touchscreen.
Technical Report MSR-TR-2011-49, 2011.

	Introduction
	An Example
	CoMingle with Explicit Time
	Abstract Syntax
	Overview of the Abstract Semantics
	Matching, Processing Rule Body and Time Obligations
	Abstract Semantics

	Implementing Event Synchronization
	Case Studies
	Related Work
	Future Work and Conclusion
	References

