Choreographic Compilation of Decentralized
Comprehension Patterns*

Iliano Cervesato, Edmund S. L. Lam, and Ali Elgazar

Carnegie Mellon University
iliano@Qcmu.edu, sllam@andrew.cmu.edu and ace@Rcmu.edu

Abstract. We develop an approach to compiling high-level specifications of dis-
tributed applications into code that is executable on individual computing nodes.
The high-level language is a form of multiset rewriting augmented with com-
prehension patterns. It enables a programmer to describe the behavior of a dis-
tributed system as a whole rather than from the perspective of the individual
nodes, thus dramatically reducing opportunities for programmer errors. It ab-
stracts away the mechanics of communication and synchronization, resulting in
concise and declarative specifications. Compilation generates low-level code in a
syntactic fragment of this same formalism. This code forces the point of view of
each node, and standard state-of-the-art execution techniques are applicable. It is
relatively simple to show the correctness of this compilation scheme.

1 Introduction

Rule-based programming, a model of computation by which rules modify a global state
by concurrently rewriting disjoint portions of it, is emerging as an effective paradigm
for implementing complex distributed applications [[1/4/8l12]]. Rule-based languages are
declarative, which promises simpler reasoning than conventional languages, and even a
safeguard against many of the pitfalls of concurrency [2]. Their main benefit, however,
is that they can capture the behavior of a distributed application as a single entity []],
giving the programmer a bird’s-eye view that abstracts away the tedium of explicitly
managing communication and the intricacies of implementing synchronization. The re-
sulting system-centric specifications are concise, high-level, and again declarative. Now,
because a distributed application ultimately runs on an ensemble of communicating de-
vices, such system-centric specifications need to be compiled into code that runs on the
individual devices, node-centric code. The translation from high-level system-centric
specifications to lower level node-centric code is called choreographic compilation [9].
It automatically weaves in the code that handles messaging and synchronization, which
are notorious sources of concurrency bugs (especially in the hands of novice program-
mers). Choreographic compilation is especially effective when the resulting code is in a
fragment of the source, rule-based, language, as their declarative nature enables simple
proofs of correctness, verifiable complexity bounds, and other forms of assurance.

* This paper was made possible by grants NPRP 4-341-1-059, NPRP 4-1593-1-260, and JSREP
4-003-2-001, from the Qatar National Research Fund (a member of the Qatar Foundation).
The statements made herein are solely the responsibility of the authors.

In this paper, we develop a choreographic compilation scheme for a specific class
of rule-based languages, namely multiset rewriting languages with support for multiset
comprehension patterns. Multiset rewriting languages represent the state of an ensem-
ble as a multiset of located facts, each describing information held by a participat-
ing node. Computation happens by applying rules that rewrite a fixed number of facts
into new facts. Comprehension patterns allow a programmer to write rules that operate
not only on a fixed multiset of facts, but on all the facts that match a given pattern,
ensemble-wide. This yields more readable, concise and declarative programs that coor-
dinate large amounts of data or use aggregate operations. We implemented this idea into
Comingle [8]], a rule-based language for programming mobile distributed applications.

Compiling comprehension patterns in a distributed setting requires addressing the
compounded effects of two challenges. The first is that multiset rewriting rules are ex-
ecuted atomically. This entails that a high-level rule, which may involve multiple lo-
cations, needs to be compiled into a set of node-centric rules, each taking the point
of view of a single location, plus coordination rules that provide the illusion of atom-
icity [9]]. The second challenge is that comprehension patterns operate maximally [6]:
they identify all facts that match them in the ensemble.

We limit the discussion to the common rule format where one node has a direct
connection to all other nodes participating in the rule, thereby ruling out multi-hop
communications. At its core, atomicity is achieved by running a two-phase commit
protocol centered on this primary node. A naive way to achieve maximality is to lock all
nodes involved, so that no concurrently executing code can consume or add facts while
this rule is undergoing piecemeal execution. We mitigate the obvious adverse effect on
performance by locking only facts that appear in relevant comprehension patterns. This
already gives all Comingle programs we have developed an acceptable running time.

Altogether, this paper makes the following main contributions:

— We identify a practical class of system-centric rules with comprehensions that en-
able effective choreographic compilation.

— We give a mathematical description of this transformation for a large fragment.

— We prove that the node-centric code produced by this compilation scheme retains
the behavior of the source system-centric program.

Section [2] of this paper introduces our language through an example, with Section [3]
formally defining it. We discuss rule topology in Section] and give selected details of
our choreographic compilation scheme in Section [5} Correctness results are presented
in Section [6] We review related work in Section [7]and outline further developments in
Section [§] Omitted details can be found in a companion technical report [7].

2 A Motivating Example

Consider the problem of computing the average temperature from the readings of an
ensemble of networked sensors. Traditionally, this involves writing at least three pro-
grams: one that probes each sensor, computes the average temperature and reports the
result; the second is a sensor-side program that returns a reading when probed; the last
expects the result.

Comingle takes a different approach. The information held by each device is stored
as a series of facts. For example, a temperature reading of 16.3 degrees could be ex-
pressed as the fact temp(16.3). We visualize the node where a fact is held as a located
Jact, writing for example [¢23]temp(16.3) to express that the reading at node £23 is 16.3
degrees. Located facts are used for all kinds of information. Here, the topology of the
sensor network could be given as located facts of the form [¢|neighbor(¢'), expressing
that ¢’ is directly connected to ¢. Similarly, the request for node ¢ to compute the tem-
perature average A of its neighbors and report it to node ¢/ would be written as located
facts [£]getAvg(¢') and [¢']report(A), respectively.

Programs in Comingle take the form of a collection of rules that consume some of
the facts held in the ensemble and replace them with other facts, possibly at different
nodes. For our example, a single rule suffices. A buggy solution that always reports 25.0
degrees without consulting the sensors would have the form

VX,Y. [X]getAvg(Y) —o [Y]report(25.0) @))

This rule is parametric in the locations involved: X is the node computing the average
and Y is the location where to deliver the result. Whenever the ensemble contains an
instance, say [(12]getAuvg(fy), of the left-hand side, this rule can be applied with the
effect of replacing this fact with [¢g]report(25.0). Observe that this effect is global: it
consumes a fact from one node and creates a related fact in a different node. This read-
ing makes rule (1)) system-centric as it describes a computation that views the ensemble
as a single entity.

But of course this rule comes short of correctly solving our problem. Node X, which
does the polling, needs to collect the temperature of all its neighbors. Comingle provides
multiset comprehension patterns as a convenient primitive for this kind of actions. The
comprehension pattern | [X|neighbor(N)§ 5 _ v, collects all the neighbors N of X into
amultiset Vs. While this is a local computation occurring at X, comprehension patterns
do not need to be local: the comprehension | [N]temp(T) | N € Ns{_, ,, collects the
temperature reading [N]temp(T') held at each node N among Ns into a multiset 7's.
At this point, the average is simply computed by adding up the values in T's and di-
viding by the number of such values, all primitive operations in Comingle. The overall
computation is captured by the rule

L [X]neighbor(N)§ n_ s
U[NJtemp(T) | N € Ns{rp_ p,
where A = sum(Ts)/size(Ts)

\ [X]getAvg(Y) —o [Y]report(A))

where the facts matched by the expressions before “\” are consulted but not deleted
by the rule application, while the fact after it is consumed. The “where” clause denotes
a side computation, something we will generalize into the notion of a guard. Both are
convenience syntax that are not part of the core language.

Rule (2) is system-centric too, even more so than our first example. Its application
is atomic and maximal: from the point of view of the programmer, the matching of facts
on the left-hand side of — and the rewriting on its right-hand side happen in one go,
moreover all facts matching [X|neighbor(N) are collected in Ns, and similarly for T's.

Variables: x Locations: ¢ Terms: t Guards: g Predicates: p

Base Facts f = p(d) Located Facts F' ::= [(] f
Expressions E:=F | F|gf:o, Rules Ru=VZ. H|g—B
Heads,Bodies H, B ::= F Programs P:=R

Fig. 1. Abstract Syntax of Core Comingle

While rule (2) captures exactly the process of solving our example problem, and
in a most concise way, it is impossibly abstract from the point of view of the nodes in
a distributed system: such nodes are only able to send and receive messages, and per-
form local computation. We bridge this abstraction gap by transforming rule into
a set of rules that look much more like rule (I). This rule has, in fact, a simple opera-
tional interpretation in a decentralized ensemble of computing nodes: its left-hand side,
[X]getAvg(Y), performs some local computation at node X (here retrieving the value
of a stored fact), while its right-hand side can be understood as sending the message
report(25.0) to node Y — the underlying networking middleware will take care of de-
livering it to Y as a fact that it can then use. Rule (T) has therefore also a node-centric
interpretation, that can be used operationally. The main challenges of designing a chore-
ographic compilation scheme for Comingle — i.e., a transformation of each abstract,
system-centric, rule into an equivalent set of operational, node-centric, rules — is to
maintain the illusion of atomicity and maximality at the operational level. This is the
subject of the remainder of this paper and of the technical report [7].

3 Core Comingle

In this section, we formalize the core syntax and semantics of Comingle — the full
language is described in [[7l8]. We begin by introducing some notation. We write o for a
multiset of syntactic objects 0. We denote the extension of a multiset 6 with an object o
as “o0, 0”, with @ indicating the empty multiset. We also write “0;, 02" for the union of
multisets 07 and s. The literal multiset containing o1, . .., 0, is denoted (o1, . ..,0,].
Given a multiset of labels Z, the multiset of objects o; for ¢ € 7 is denoted UzEI
We write & for a tuple of 0’s and [£/Z]o for the simultaneous substitution within object o
of all free occurrences of variable x; in & with the corresponding term ¢; in . A generic
substitution is denoted 6. Substitution implicitly a-renames bound variables as needed
to avoid capture. We write F'V (o) for the set of free variables in o.

Syntax. Figure [I| defines the abstract syntax of Comingle. Locations ¢ are names that
uniquely identify computing nodes, and the set £ of all nodes participating in a Comin-
gle computation is called an ensemble. At the Comingle level, computation happens by
rewriting located facts F of the form [¢]p(f) where p is a predicate symbol and # is a
tuple of rerms. We will simply refer to them as facts. The semantics of Comingle is
largely agnostic to the specific language of terms — in this paper, we assume a first-
order term language extended with primitive multisets. We write [¢] f for a generic fact
f located at node ¢.

Comingle transitions: P > St — St'

V(H|g—oB)€P [E0g 0H=2..4Sty 0H=2..,5 0B >>n.q St
P Sti, St — Sig, St (

rw)

where H £,..4 St iff store St matches ground head H
E g iff ground guard g is satisfiable
H 27, St iff store St matches no comprehension patterns in ground head H
B >>y04y St iff ground body B unfolds to store St

Fig. 2. Abstract Semantics of Comingle

Computation in Comingle happens by applying rules of the form VZ. H | g — B.
We refer to H as the head of the rule, to g as its guard and to B as its body. The head
of a rule consists of atoms F' and of comprehension patterns of the form [F' | gf. .
(written [F | g§_,, in the body — the direction of the arrow is suggestive of the flow
of information). An atom F is a located fact [¢]p(f) that may contain variables in the
terms # or even as the location /. Guards in rules and comprehensions are Boolean-
valued expressions constructed from terms and are used to constrain the values that the
variables can assume. Just like for terms we keep guards abstract, writing = g to express
that ground guard g is satisfiable. Two types of guards used pervasively in this paper are
term equality ¢ = ¢’ and multiset membership ¢ € ts. We drop the guard from rules and
comprehensions when it is the always-satisfiable constant T. A comprehension pattern
lF | gz, represents a multiset of facts that match the atom F and satisfy guard
g under the bindings of variables & that range over ts, a multiset of tuples called the
comprehension range. We call F' the subject of the comprehension. The scope of & is
the atom F' and the guard g. We implicitly a-rename bound variables to avoid capture.
A comprehension pattern { [z]p(£) | ¢ ,, is system-centric whenever x appears in 7.
The body B of a rule is also a multiset of atoms and comprehension patterns.

The universal variables Z in arule VZ. H | g — B account for all the free variables
in H, g and B, and we often write V(H | g — B) for succinctness. Moreover, we
only consider safe rules where FV(B) C FV(H,g). We will occasionally use rules
of the form V#. H,\ H. | ¢ — B, viewed as an abbreviation for VZ. (H., H,) | g —
(B, H,); we then refer to H, and H.. as the retained and consumed heads of the rule.

A Comingle program is a collection of rules.

Semantics. We describe the computation of a Comingle system by means of a small-
step transition semantics. Its basic judgment has the form P > St +—— St’ where P is
a program, St is a store and St’ is a store that can be reached in one (abstract) step of
computation. A store St is a multiset of ground located facts [¢]p(t).

Rule (rw) in Figure[2|describes a step of computation that applies arule V (H | g— B).
This involves identifying a closed instance of the rule obtained by means of a substi-
tution 6. The instantiated guard must be satisfiable (= 6g) and we must be able to
partition the store into two parts Stz and St. The instance of the head must match Sty
(PH £,c.q Sty), while the remaining fragment St must not match any comprehension
init (0 H é;ead St). The rule body instance § B is then unfolded (0B >4, Stp) into

Stp which replaces Sty in the store. A reading of these auxiliary judgments is given
in Figure[2] A formal description can be found in [[748].

Rule (rw) embodies a system-centric abstraction of the rewriting semantics of Comin-
gle as it atomically accesses facts at arbitrary locations. Indeed, it views the facts of all
participating locations in the ensemble as one virtual collection. This abstract notion of
rule application needs to be compiled into a concurrent, node-centric model of compu-
tation, where each node manipulates its local facts and sends messages to other nodes.

4 Neighbor Restriction

In this section, we identify a syntactic class of Comingle rules that support efficient
node-level execution. Characteristic of these /-neighbor restricted rules is that, in any
instance, there is one node that has every other location participating in the rule as
a neighbor. Operationally, the execution of the rule can use this primary location as a
communication hub to all the other participating nodes, called forwarding locations. For
brevity, we provide only the intuition behind most definitions. See [[7] for full details.

To start with, consider a rule R = V (H — B) with an empty guard and without
comprehension patterns in its head. A node X has Y as a its neighbor in R if the head
H contains a fact [X]p() such that Y occurs in #. For simplicity, we take this as a
proxy for a direct communication link — in actuality only certain facts may be used to
describe point-to-point messaging.

Guards somewhat complicate this definition as they are often used to calculate new
values, including locations, on the basis of existing values. Let g be a guard with free
variables 7 and 7. We say that Z determines i/ in g, written & £ ¢, if for every ground
substitution 7/ there is at most one substitution 5/7 that makes g satisfiable, i.e., such
that = [t/4, 5/7]g. We write Z £ y if i is among such 7. Then, Y is a neighbor of
X inrule V(H | g —o B) if the set of variables occurring in facts located at X in H
determines Y. In symbols, {z € FV(E): E = [X|fin H} & Y.

Comprehension patterns further complicate this definition as they may identify par-
ticipating locations indirectly through their comprehension range — for example N in
L[N]temp(T) | N € Ns§_ p, butalso Nsin | [X]neighbor(N)T _ ys- Thus, a (pos-
sibly bound) variable Y in {[Y]f | gv ;. ,, is a neighbor of X inrule V(H | g — B)
if {t€ FV(E): E=[X|f or E=[X]f"| ¢S, in H £& V.

Given this definition of neighbor, a location X,, is n hops away from Xy in rule
R if n is the smallest number such that there are nodes Xi,... X, 1 such that X;
has X1 as its neighbor for each ¢ from O to n — 1. Rule R is n-neighbor restricted
with primary location X, something we denote 'y R > X, if every location Y such
that [Y]f appears in R is at most n hops away from X. Each such Y other than X is
called a forwarding location. A Comingle rule that is not n-neighbor for any n has mu-
tually unreachable nodes and therefore cannot be concretely executed on a distributed
collection of nodes as it would require out-of-band synchronization that bypasses the
underlying communication infrastructure. We are particularly interested in rules where
n = 1. In fact, 1-neighbor restricted rules are such that the primary location has a di-
rect communication link to every other location participating in the rule, which entails
that device-level code that implements it only needs to use point-to-point messaging

primitives to and from the primary location, thereby avoiding complex routing. Fur-
thermore, 1-neighbor restricted rules where all head facts are at the primary location
are such that local computation is sufficient to determine applicability, i.e., if there is a
match for their head in the computing state — their body may however locate facts at
other nodes. We call such rules node-centric. Rule (1)) from Section [2] is node centric
with primary location X as its head contains a single atom located at X. Rule is
I-neighbor restricted with primary location X (but not node-centric) as the compre-
hension | [X|neighbor(N)§ _, v (locally) determines the contents of the multiset Ns
from which the value of every location N in |[N|temp(T) | N € Ns{,_, 5, is drawn.
Thus each value T held in [N]temp(T) can be accessed in one hop from X.

A Comingle program is 1-neighbor restricted if all its constituent rules are such.
All applications we have developed using Comingle have naturally been 1-neighbor
restricted [8]], and therefore we will limit our discussion to this class of programs. We
will use programs consisting solely of node-centric rules (node-centric programs) as the
target of the compilation of 1-neighbor restricted programs. See [9]] for a generalization
in the absence of comprehensions.

5 Choreographic Transformation

Choreographic compilation elaborates each system-centric rewrite rule R into a set [R]|
of node-centric rewrite rules that execute portions of R at the participating locations.
The challenge is to design [[R]| so that it behaves exactly like R, i.e., that it is applicable
whenever R is and eventually achieves its effects (completeness), and that it does not
introduce any new effects (soundness), especially partial execution. In Section [6] we
spell out these requirements and outline proofs that our compilation satisfies them.

In the absence of comprehension patterns, Comingle is monotonic:

Property 1 (Monotonicity).
If P> St — St',then P > St, St" —— St’, St” for any St”.

This property, typical of traditional multiset rewriting, allows processing head atoms
incrementally, both in a centralized [3] and in a distributed [9] setting. Incremental
processing is precisely what is done by the node-centric rules [[R]| a system-centric rule
R is compiled into: a primary location combines data incrementally from the forwarding
locations.

However, because comprehension patterns have a maximal semantics, monotonic-
ity does not hold for full Comingle [6]. A naive approach to incrementally matching the
head of a system-centric rule, as adapted from [9]] for example, would be unsound. Con-
sider the rule head [X]p(Y1, Y2), | [Y1]q(%) §z_ s, > L[Y2]¢(%) [z, Where incremental
execution proceeds from left to right, say. By the time X has received the facts collected
at Y, new facts matching [Y71]¢(Z) may have arrived at Y7, violating maximality. We re-
cover soundness by locking all facts that can thus compromise incremental processing.
In general, these are facts headed by a predicate p such that the atom [¢]p(Z) occurs as
the subject F' of a comprehension | F' | g§.._,. anywhere in the program. We call them
non-monotonic predicates. Predicates that never appear within a comprehension pattern
are monotonic, and we do not need to take special precautions for them.

5.1 An Example

As an example, consider the following Comingle rule, which we call swp:

[X]swap(Y, P), [Y]okSwap
U[X]data(M) sy
V| U[X]data(N) | N < P{y_ne | —
%Y]]data((M) ‘| M > ng Mts l[¥]data(N)Jn s

This rule lets two parties X and Y atomically swap values up to a threshold P. It is trig-
gered when node X holds a fact swap (Y, P) while node Y holds okSwap. It retrieves all
the facts data (V') held at X such that N < P (that is {[X]data(N) | N < P§y_ ys)
and sends them to Y (with body expression | [Y]data(N)| _ y,)- At the same time, it
transfers all data(M) such that M > P from Y (i.e., | [Y]data(M) | M > P§,, /)
to X (as {[X]data(M)§,,.»s)- The mention of Y as an argument of swap makes this
rule 1-neighbor restricted with X as its primary location and Y the only forwarding
location.

This rule is compiled into the six node-centric rules (execy” to abort’’”) discussed
next. Each of these rules executes an aspect of the overall system-centric rewriting
embodied by rule swp. It makes use of various auxiliary predicates, which we capitalize
for ease of identification, and it introduces new variables, which we write in lower case.
We write the auxiliary predicates as a root possibly superscripted by a rule or predicate
name, and possibly subscripted by a relevant location variable, for example Reg?’”
below. We further highlight them using various background colors, that the reader may
safely ignore. The new facts are categorized as follows.

— Locking facts have the form [X]Free?. For emphasis, we will highlight locking
facts with a light-blue background . Such facts are a means to lock non-monotonic
predicates p in order to guarantee maximality: a rule that makes use of such a
predicate at some location X, either in its head or in its body, will be compiled into
a rule that acquires [X]Free? , thereby inhibiting the execution of other rules that
make use of p at X. This fact is put back into X s local state once the rule execution
has completed successfully, or if it gets aborted.

— Transaction facts are of the form [X]Next(n), [X]Trans(e), [X]Done(e) or
[X]Abort(e). We highlight them in pale orange . Their purpose is to keep track of
and manage ongoing system-centric rule execution attempts, which we call trans-
actions. The variable n is a counter incremented each time node X initiates a trans-
action, while e is another number computed from n and the location name X to act
as a global transaction identifier. The fact [X]|Next(n) holds the current value of
X’s counter n, the fact [X]Trans(e) indicate that transaction e is ongoing at X,

while [X]Done(e) and [X]Abort(e) signal that e has either completed success-
fully or is being aborted.

— There are three types of staging facts for each rule R (identified by some unique
name r), all highlighted in a pale green background for ease of identification. With
the fact [Y]|Req (e, X, %), primary location X issues a request to Y to gather
relevant local facts in the head of R as part of transaction e. The parameters &
list the information that X was able to secure and that may be useful to Y. The
answer ¢/ is returned to X by means of the fact [X]Ans (e, Y,) . Finally, X can

remember information Z for its own records by means of the fact [X]|Wait"(2) .
They are used to implement the various stages of a two-phase commit among the

parties involved.

The first compiled node-centric rule is to be executed at the primary location, X:

[X]swap(Y, P), [Y]ReqVy'™ (e, X, Ns, P) ,
| UXdota() | N < Py | — | XIWat (e, VN0 P). | (e
[X]Free®™® | [X]Next(n) [X] Trans(e) , [X]Nezt(n') X

where e = H(X,n) andn’ = n+ 1.

The head of this rule contains all the expressions that our original rule could match
locally, namely [X|swap (Y, P) and | [X]data(N) | N < P _, v, Because predicate
data occurs within a comprehension — it is non-monotonic — this rule also acquires

a lock on it ([X] Freedate). Finally, it increments the local counter n (retrieved as
[X]Next(n) and reasserted as [X]|Next(n') withn’ = n+ 1). The function H(X, n)
combines the value of this counter and the primary location’s identity into a globally
unique value e which will act as a transaction identifier, recorded as fact [X|Trans(e) .
The body of this rule also includes the staging fact [Y]Reqy” (e, X, Ns, P) to re-
quest the matching data values from node Y. Note that the arguments mention the
transaction identifier e, who to return the results to (X), and the variables correspond-
ing to data that X could compute locally (a more refined compilation scheme could
optimize Ns away as it is not needed by Y). Node X also asserts the staging fact
[X] Wait**P (e, Y, Ns, P) for its own records, so that it can continue execution once it
receives a response from Y.

The forwarding location Y can respond to X in one of two ways: by returning the
requested data, or by aborting the transaction. A successful response begins with the
following rule:

YokSwap, 1[Y]data(M)| M > PS, e

[Y]Free®® | [Y]Req5 (e, X, Ns, P))

[(X]Ansy? (e, Y, Ms ey

[Y] Trans(e) ,] (exec™™™
)

Here, Y retrieves its part of the original rule head, | [Y]data(M) | M > P§,, ,,, and

[Y] okSwap, and locks the non-monotonic predicate data (with [Y]Free®®). It notes

that it is engaged in transaction e with the fact [Y]Trans(e) and sends X the expected
answer, [X]Ansy” (e,Y, Ms) . Observe that, at this point, it is still in the transaction.
Next, X resumes execution by asserting the body of swp:

MX]data(M)SM«—Msa z[Y]data(N)SNeNs’ (succse?
Ul Free@5, 1 yvi o UlDone(e) Sy qx.ys | o

With it, X combines the values it had computed locally ([X] Wait®" (e,Y, Ns, P))
and the values obtained from Y (as [X]Ansy”(e,Y, Ms)) and asserts the body of

the original rule (] [X]data(M)S,, s> L[Y]data(N)§ . ns)- It also releases all locks

(1[l) Freedata Si—1x,yy) and signals that the transaction has completed successfully
(Z[Z]Done(e)jh—lX,Yj)-

[X] Wait*“? (e, Y, Ns, P) ,

v
[(X]Ansy? (e, Y, Ms)

)

One last clean-up rule is needed to remove all facts associated with a completed
transaction e, namely [Z] Trans(e)§, [Z]Done(e) . It does this at every participating
node Z.

v (l[Z) Trans(e)§ , [Z]Done(e) —o @) (done)

The transaction started by rule (exec‘;g”p) can fail for one of two reasons: either

because the forwarding node Y does not have the requested data (e.g., if there is no
okSwap at Y), or because Y is already engaged in possibly conflicting transactions.
Although comprehension patterns are able to express the absence of a fact (or class of
facts) in the state, we will approximate the first option by non-deterministically abort-
ing the transaction (see the note below). Transaction failure is then captured by the
following rule, executed at Y:

v(z[Y] Trans(€')., ... \ [Y]ReqS (e, X, N5, P) | e < es —o [X]Abort(e))

where e < es iff es = @ or forsome e’ € esande < e’

e’—es

(fail3*?)

Upon receiving the staging fact [Y]|Reqy” (e, X, Ns, P), node Y collects all of its

active transactions in the multiset es. The guard e < es succeeds in one of two cir-
cumstances. The first is when there is no other ongoing transaction (which approximates
an unsuccessful match). The second is when some other ongoing transaction ¢’ has a
larger identifier (e < €’). This guarantees that at least one transaction (the “strongest”)
will delay its decision to abort, until all others at the same location have terminated
(with either success or failure). This avoids livelocks between transactions attempting
to acquire the same facts. Conversely, the uniqueness of transaction identifiers guaran-
tees that only one such transaction at a location delays its abort — otherwise we risk

inducing deadlocks. Because rules (execy’”) and (fail;/”) are competing for the same

swp

staging fact [Y]Req+ " (e, X, Ns, P) , exactly one of them is applicable in general, and
only the latter is enabled when Y does not have the data requested by X F_-]

Rule (fail{*?) is followed by rule (abort;/""), examined next. It is executed at X:
[X] Trans(e) , [X]Abort(e) ,
[X] Wait*"? (e, Y, Ns, P)

[(X]swap(Y, P), [[X]data(N)§ y _

b tSU}p
[X]F,r_eedata (a or Y)

It aborts transaction e by consuming the fact [X]Trans(e) and reverting X’s local
computation, recorded in [X]| Wait**? (e, Y, Ns, P)), back into the state.

5.2 Choreographic Compilation

We now describe Comingle’s choreographic compilation scheme on the basis of this
intuition for one form of rules — see [[7]] for the general case. We write NM (P) for the

! A version of rule (fail}*’?) that is mutually exclusive with rule (exec’?) is as follows:

v (Uv)Trans(e) 5o

o/ ses \ [YIRea Y (e, X, Ns, P) s LY JokSwap§ (y_, o | eLes Aos=@ —o [X]Abort(e))

where the underlined components check that Y does not hold a fact okSwap. A general treat-
ment of negation as absence, as this feature is known, is beyond the scope of this paper.

[z] He, [x] Next(n') , [z] Trans(e) ,
V| [z]Free , gz — | [z]Wait" (e, FV (Hz)) , whaerfg Z/::Ii(i’ {L) (execy)
[m}Next(n) UjeIuKl [J}Requ(evFV(Hw))

o Y (1H;, [Free , [j1Req} (e, FV (Hy)) | g; — [j] Trans(e) , [a]Ansj(e,5, FV(H;))) (exec))
v

y L[:E] TmnS([e)]A[CL‘}:EVai.tTF('e‘} FV(Hz))] ‘g [z] Bs, [Z) Bz, [K] Bk, } (et
serux [@lAnsj (e, j, FV (Hj)) [z,Z, K] Free , [Z,K]Done(e)
v([x] Wait" (e,-) , 1S ;eun [2]Ans(e,5,) \ @ | ~g —o [x]Abort(e)) (fail?)
Useron ¥ ([elbort(@)\ [glAnsj(e,d,) — GV, [lFree, [Donee)) (abort?)
e R v Wi) e

Fig. 3. Compilation of Simple Rule V ([z]Hz, [Z]Hz | g« A gz N g —o [z]Bs., |[Z]Bz, [K]|Bxk)

set of all non-monotonic predicate names in program P and NM p (FE) for the subset of
NM (P) that occur in expressions E (see [[7] for a formal definition).

The choreographic compilation [[P]] of a 1-neighbor restricted program P is a node-
centric program equivalent to P, a program that consists only of node-centric rules. The
compiled program [[P]] is comprised of the compilation [[R]|” of each source rule R
in P, plus rule (done) above — this rule is “global” in that it is shared by the encoding
of all rules in P.

P = { UREP TRT" (rule names given below)
Vi, e. l[j] Trans(e) §, [j]Done(e) — & (done)

Simple 1-Neighbor Restricted Rules. We consider simple 1-neighbor restricted rules,
that contain only localized comprehension patterns. The location of the subject of such
patterns is bound outside the comprehension itself. Thus, in rule (2), the comprehension
L[X neighbor(N)S 5_ n Was localized, but | [N]temp(T) | N € Ns§,_ p,isnot. The
case study in Section[5.1]consisted of a simple rule.

Using some abbreviations of convenience (explained next), a source rule R with
such characteristics can be written as follows:

V.I‘,I,K:. ['T]H&H [I]HI ‘ gz Ngz Ng —o [JZ]Bx, [I]Bza [’C]B’C

Here, x is the primary location of R and H, collates all the facts in R’s head located
at . These can be either atoms [z|f or localized comprehensions] [z]f | ¢f, .. Simi-
larly, B, refers to the body expressions located at x. The set Z contains all forwarding
nodes that locate facts in the head of R. We write [Z] Hz for | §,_, H; where each H;

L1 Trans(e))S e, \ [1Redj(e,) | e < es —o [a]Abort(e)) (Fail})

Success Failure at forwarding Failure at primary

T J e x j e T J
SXEC/; execg GXGC;
: 3 3 ; 5 x
< < <
exec” fail? exec”,
N J > J S J
— > —
r r
succ abort; .
J fail
=S x < x
> a— = > [
-
N N . | - abortj
S S -)
T
abort;,

Fig. 4. Possible Execution Sequences of a Compiled System-centric Rule

follows the same conventions as H,,, and similarly for body expressions Bz. The set /C,
disjoint from x and Z, lists all forwarding nodes that locate expressions only in the body
of R — we call them receiving locations. The guard of R is partitioned into fragment
g. whose satisfiability can be determined locally by z, i.e., such that F'V (H,) s 7
for some ¢/, into similar fragments g; for each i € Z which we abbreviate as gz, and
into a final fragment g which cannot be determined locally by any of these nodes.

Figuredeﬁnes the compilation [P|? of a simple system-centric rule R named r.
The constituent node-centric rules implement a two-phase commit with the same behav-
ior as R. The possible executions patterns are sketched in Figure@ The encoding [[P]|#
relies on further abbreviations: given a location j among x,Z, K, we write [j]Free for
Upenmp (H,.B;) [7] Frree? , the locks of all non-monotonic predicates mentioned by j.
Furthermore, we write [J]Free for | §,_; [j]Free , the locks of any location j in set
J. We also write “_” for irrelevant terms, realized in a rule as an appropriate number of
single-occurrence variables.

Rule (exec’) initiates execution at the primary location x by matching local facts
([«] Hy), locking non-monotonic predicates ([] Free) and setting up a new transaction
e as discussed in Section It sends a request to each forwarding location (Uj cTUK

[j] Req; (e, FV(H,))) and prepares for their response with [z] Wait" (e, F'V (H.)) .
Rule (execy) implements a successful reply by a forwarding location j: it locks its
non-monotonic predicates ([j]Free), records the transaction ([j] Trans(e)) and re-
turns a response ([z] Ans; (e, j, F'V(H;))) — in the case of a receiving location in K
this amounts to just locking non-monotonic predicates. Execution then continues at x
with rule (succy) which collates all the responses ({f ;.7 [z]Ansj (e, j, FV (H;))).
checks the remaining guards g, rolls out the body of R, frees all non-monotonic predi-

cates and prepares for clean-up using rule (done). This execution sequence is shown on
the left of Figure[d]

As described in Section rule (failg) aborts execution at a forwarding node j in
response to a match failure or to preempt livelock. This is followed by rules (abort?)
and (abort]) with which primary location x rolls back all head facts that had been

consumed and frees the locks. This possibility is sketched in the central portion of
Figure [}

One more behavior, which was not possible in the example in Section [5.1] is de-
picted on the right-hand side of Figure[d] Here, primary z has collected responses from
all forwarding locations, but they cannot be combined as prescribed by R because the
guard g is not satisfiable. In this case, rule (fail}) is applicable and triggers the abort
rules just described.

Generic 1-neighbor Restricted Rules. The techniques deployed for simple rules form
the core of the compilation of generic 1-neighbor restricted rules whose full treatment
can be found in [7]], for space reasons. The treatment of system-centric comprehension
patterns, whose subject [z]f is located at a bound variable z, requires some care as such
z may be among Z or /C, or could be z itself above. Naively sending separate requests
for different predicates would stall execution as the first request would lock the non-
monotonic predicates, thereby preventing the others from making progress. We address
this issue by having each node involved acquire all information it needs in one go.

Store. The node-centric encoding of a store St, denoted ﬂStﬂ?, extends St with, for
each location ¢ in an ensemble L, (a) a locking fact [¢] Free? for each non-monotonic
predicate p of P and (b) a local transaction counter ¢y in ¢ for £. It is defined as follows:

St,
TSNE = { Ueer Upenmep) € Free”
U oer €] Next(ce)

6 Formal Results

In this section, we present some properties of the transformation in the previous section,
and give sketches of their proof. Details can be found in [7]. Specifically, we show
that choreographic compilation is sound and complete: it transforms a system-centric
program into node-centric rules with what amounts to the same behavior. We also note
that the computation carried out by a compiled rule can never get stuck midway.

For the convenience of the reader, we distinguish between source and encoded
rewrite states by denoting the former St and the latter Et. The operation || Et||” that
decodes a compiled state Ft back into a corresponding source state St, relative to a
I-neighbor restricted program P is defined in [7]. It does so by discarding all locking
and transaction facts, by keeping source facts, and by reverting request and waiting
facts to the source fact they had replaced. Other staging facts are ignored. We write
obligations(P, E) for the result of this extraction on a staging fact E.

To begin with, the following property shows that for every reachable encoded state
Et, we can always derive another state £t such that it does not contain “stuck” trans-
actions. Specifically, there are no encoded matching obligations in Et’.

Theorem 1 (Progress). If [P > [St]|E +——* Et, then [P]| > Et —* Et' for
some Et' such that obligations(P, Et') = @.

Proof. By structural induction on our choreographic transformation schemes, we first
show that any individual transaction e can always be concluded as an abort or a suc-
cessful application of a system-centric rewriting. In either case, encoded matching obli-
gations are consumed. This result is extended to an arbitrary number of transactions,
which the antecedent of the theorem may be executing concurrently.

Next, we show that every derivation of a compiled program [[P]| is derivable in its
source states. Hence the choreographic transformation is sound.

Theorem 2 (Soundness). If [P]| > [[St|Z ——* Et, then P 1> St —* | Et||”

Proof. The proof starts by considering a single step, where it induces the definition
of our choreographic transformation. Specifically, we show that every encoded deriva-
tion step corresponds to either a source derivation step or a stuttering step (i.e., zero
step P > St +——* St). This involves showing that for derivable states of each
choreographic transformation, every removal of a matching obligation (i.e., [j]H;) is
accompanied by an addition of a corresponding encoded matching obligation (e.g.,
[7] Wait" (e, j, ¥)), hence via the decoding operation, source facts are never wrongfully
omitted. A simple induction lifts this result to the multiple step case.

Theorem [3| states that every derivation of a source program P can be simulated by
[[P]]. Hence the choreographic transformation is complete.

Theorem 3 (Completeness). If P > St —* St', then [P] > [St]T ——* Et’ for
some Et' such that | Et' |7 = St'.

Proof. The proof proceeds by structural induction on our transformation. Specifically,
we show that, using Theorem (1} we can always simulate each source derivation step
with a series of encoded derivation steps that applies a transaction of the corresponding
source derivation. Therefore, Ft’ exists. A further induction is used to stretch this result
to multiple derivation steps.

7 Related Works

An extension of Datalog for implementing network protocols is explored in [12]]. This
paper defines link-restricted Datalog rules and rule localizing encodings which are spe-
cific instances of neighbor restriction and choreographic transformation discussed here.

Our work draws inspiration from research on choreographic programming (e.g., [LO]).
An example of a coordination language in this domain is Jolie [L1], which is targeted
at service-oriented web applications. By and large, these works focus on choreographic
projections of lower-level imperative-style programming languages, our transformation
share the same goals and intuition, at a higher level of abstraction, though.

The execution model underlying Comingle is inspired by the run-time architecture
of Constraint Handling Rules [3] (CHR). Also based on rule-based multiset rewriting,
the CHR language can be viewed as an ancestor of Comingle. There is abundant re-
search on exploiting CHR as a parallel execution model, of example as an extension of
the actor model [13] and for programming FGPAs [14].

Comingle is a logic programming framework aimed at simplifying the development
of applications distributed over multiple mobile devices. The original prototype [S!8]]
targeted the Android SDK, and has recently been extended to x86 devices running Java,
thereby supporting mobile applications over heterogeneous platforms.

8 Conclusions

In this paper, we develop a choreographic compilation scheme for multiset rewriting
languages with support for multiset comprehension patterns. This choreographic com-
pilation scheme preserves soundness: it transforms a system-centric Comingle program
into a node-centric encoding that ensures both atomicity of the rule application and
maximality of comprehension patterns. Node-centric encodings have a straightforward
node-centric operational interpretations (message passing), and thus are immediately
executable by individual computing nodes. In all, our work here provides a founda-
tional bridge between high-level system-centric specifications of decentralized multiset
rewriting with comprehension patterns, and their lower-level node-centric operational
interpretations.

References

1. M. P. Ashley-Rollman et al. A Language for Large Ensembles of Independently Executing
Nodes. In ICLP’09, pages 265-280. Springer LNCS 5649, 2009.

2. L. Caires and F. Pfenning. Session types as intuitionistic linear propositions. In CONCUR
2010, pages 222-236, Paris, France, 2010. Springer LNCS 6269.

. T. Frithwirth. Constraint Handling Rules. Cambridge University Press, 2009.

4. S. Grumbach and F. Wang. Netlog, a Rule-based Language for Distributed Programming. In
PADL’10, pages 88-103. Springer LNCS 5937, 2010.

5. E. S. Lam. CoMingle: Distributed Logic Programming Language for Android Mobile En-
sembles. Download at https://github.com/sllam/comingle} 2014.

6. E.S.Lam and I. Cervesato. Optimized Compilation of Multiset Rewriting with Comprehen-
sions. In APLAS’ 14, pages 19-38, Singapore, 2014. Springer LNCS 8858.

7. E.S.Lam and I. Cervesato. Decentralized Compilation of Multiset Comprehensions. Tech-
nical Report CMU-CS-16-101, Carnegie Mellon University, 2016.

8. E. S. Lam, I. Cervesato, and N. F. Haque. Comingle: Distributed Logic Programming for
Decentralized Mobile Ensembles. In COORDINATION’15. Springer LNCS 9037, 2015.

9. E. S. L. Lam and I. Cervesato. Decentralized execution of constraint handling rules for
ensembles. In PPDP’13, pages 205-216, Madrid, Spain, 2013.

10. I. Lanese, C. Guidi, F. Montesi, and G. Zavattaro. Bridging the gap between interaction- and
process-oriented choreographies. In SEFM ’08, pages 323-332, 2008.

11. I. Lanese, F. Montesi, and G. Zavattaro. The Evolution of Jolie — From Orchestrations to
Adaptable Choreographies. In Software, Services, and Systems, pages 506-521, 2015.

12. B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein, P. Maniatis, R. Ra-
makrishnan, T. Roscoe, and 1. Stoica. Declarative Networking: Language, Execution and
Optimization. In SIGMOD 06, pages 97-108, 2006.

13. M. Sulzmann, E. S. L. Lam, and P. V. Weert. Actors with multi-headed message receive
patterns. In COORDINATION 2008, pages 315-330, 2008.

14. A. Triossi, S. Orlando, A. Raffaeta, and T. Frithwirth. Compiling CHR to Parallel Hardware.
In PPDP’12, pages 173—-184, New York, NY, USA, 2012.

w

https://github.com/sllam/comingle

	Choreographic Compilation of Decentralized Comprehension Patterns

