
Fast Indexing Engine
for Data Identified by a Hashed ID

and Stored in an Immutable File

Cyril Dever

Edgewhere

November 26, 2018

Abstract

We define here an algorithm for indexing the system based on identifiers that are hashed values which is at
the same time very powerful to the writing and the reading. We call it the Treee™.

I. Introduction

The challenge was to set up a powerful yet
safe search engine to use when the data
is some linked list of items that could

be themselves connected to each other in sub-
chains, indexed through their identifiers that
are only made of hashed values (like SHA-256
string representations), and all stored in an
immutable file.

Its best application is for a blockchain file
where an item is a transaction embedding a
smart contract, and each subchain of items the
subsequent uses and/or modifications of this
smart contract.

This present document describes such index-
ing engine.

Definition 1 (Item). An item is the actual ob-
ject recorded in the immutable file subject to
indexing.

As previously stated, it is initially meant to
be a transaction or a block in a blockchain file.

Definition 2 (Leaf). A leaf λ embeds the infor-
mation helping to retrieve one or more possibly
linked items.

II. Formal Description

1. Acyclic graph

Treee™ is an algorithm for indexing items
recorded in an immutable file based on their
identifiers that are hashed values.

It is constructed as an acyclic graph (a tree
T), each node containing either a node address
(its sons) or a set of leaf.

Definition 3 (Hashed Identifier). We call ι a
hashed identifier (or hashed value) the hex-
adecimal string representation of the result of
a data d passed through a hashing function h()
such as:

ι := h(d) (1)

The passed data d could be anything but it
must be unique if it were to be used as identi-
fier per se.

In blockchains we operate, this data d is usu-
ally the item itself, ie. a transaction or a block.

The hashing function could use any crypto-
graphic hashing algorithm as long as it is set
beforehand and once and for all in the targeted
system 1. The number N represents the num-
ber of bits of the returned hash, eg. 256 for
SHA-256.

The number of sons of a node is determinis-
tic and depends on the depth of the tree.

Let pk be the number of sons of a node Nk
at depth k.

The goal is to create a balanced tree whose
width is adaptive to decrease depth and opti-
mize performance.

We are looking to index numbers, in this
case the numerical value of the item’s unique
identifiers ιi(∀i ∈N).

1We currently use the SHA-256 algorithm because of
its wide adoption in both end-user and back-end environ-
ments

1



Treee • Fast Indexing Engine • Cyril Dever

Recall. An identifier is at its core a hashed
value, that is its digest is fundamentally a byte
array that could represent any positive integer.

2. Index

We now explain the course of the index.
Let ιbi be the value of the hashed identifier

for the item i in binary form, eg.

ιbi := "a1" 7→ 10100001

indicating its position in the tree T.
At each step j := [0..n) | n ≤ N, we would

pass to child 0 if the j-th bit of ιbi equals 0;
otherwise, we would pass to child 1.

Let Rιi
j be the value of this representation of

ιbi at step j < k.
For a full tree T, we build a representation

of this number at each step and traverse the
tree the same way.

At the step j of depth k, we pass to child 0
if Rιi

j equals 0, we pass to child 1 if Rιi
j equals

1, . . . , we pass to child pk−1 if Rιi
j equals pk−1.

We stop when the node is an empty leaf λj.

Definition 4 (Representative). To construct Rιi
j ,

this representative at step j, we will succes-
sively take the modulo of prime numbers,
each step j using the j-th prime number in
the ordered sequence of all prime numbers
P := [1, 2, 3, 5, 7, 11, 13, . . .], starting at 0.

This construction ensures that Rιi
j be unique.

Proof. According to the Chinese remainder
theorem[1], each number has a unique rep-
resentative that could be written as the contin-
uation of these modulos.

Indeed, a number n can be written in the
following form:

n ≡ n mod Pi

where Pi is the i-th modulo in P .
Modulos are calculated in O(1) for fixed-

sized integers. Since the multiplication is faster
than the division (necessary for the calculation
of the modulo), one may use multiplications
by means of floating:

Pi ×
(

n−
⌊

n× 1
Pi

⌋)

This writing in the form of a sequence allows
to uniquely define each integer n.

Given the random nature of the numbers
(or pseudo-random, since the identifiers of the
items are generated by cryptographic hashing
technologies), the tree T is balanced.

To unbalance it in a malicious way, it would
be necessary to be able to generate hashes
whose modulo follows a particular trajectory.

However, the difficulty of such an opera-
tion increases exponentially (in the order of
e(k×log(k)) where k is the depth of T).

As a reminder, the product of the first 16
prime numbers already equals:

32, 589, 158, 477, 190, 044, 730 ' 3× 1019

Therefore, as soon as the index contains a rea-
sonably large amount of data, unbalancing the
tree in a malicious way would become more
and more impossible, if at all possible.

3. Leaf is information on item

Let s be a suchain of linked items. For example,
it could be a sequence of transactions between
two stakeholders defining the progressive evo-
lution of the terms of their smart contract.

And let s0 be the first item in a subchain of
linked items.

A leaf λis ∈ T contains the following list of
information about an item i referred to by its
identifier ιis in subchain s:

• Identifier (ID) of the current item (as a hash
string):

λID
is := ιis

• Position, ie. start address of the current
item in the file, eg.

λPos
is := 12080

• Size (in bytes) of the saved item in the file,
eg.

λSize
is := 2074

• Origin, ie. the unique identifier of the item
that is at the start of the item’s subchain (if
any):

λ
Origin
is := ιis0

2



Treee • Fast Indexing Engine • Cyril Dever

• Previous, ie. the optional unique identifier
of the previous item chained to it:

λPrev
is := ιis−1

• Next, ie. the optional unique identifier of
the next item chained:

λNext
is := ιis+1

A leaf whose next item field is empty is the
last item in the subchain:

λNext
is = ∅ ⇐⇒ ιis+1 6∈ T (2)

A leaf whose origin item field is equal to the
identifier of the current item is necessarily the
origin of the subchain:

λ
Origin
is = λID

is ⇐⇒ s = s0 (3)

As such, it has a particular operating since,
if there were to be one or more items thereafter,
the last item of the subchain will be identified
here as its previous item. Therefore, let sz be
the last index in a subchain of linked items, we
have:

λ
Origin
is = λID

is

λPrev
is 6= ∅

⇐⇒ λPrev
is := ιisz

(4)

The last three fields of the leaf therefore
transforms s as a circular linked list.

III. Implementation

1. Node creation

Each step j is paired with the j-th prime num-
ber in P , eg. the prime number used is 11 on
one step 52.

At run time, a node is either a parent or a
leaf, the latter being an end to a branch in the
tree.

Definition 5 (Parent node). A parent node is
a node containing other nodes, either leaves or
other parent nodes.

A leaf is not a parent node by definition.

2We consider step 0 with prime number 1 being the
root of the tree T, hence not being counted.

A new parent node must be created every
time a representative number walks through
the same path as a previous one up to the
existing node, extending the branch by one
step.

For example, at step k, if a node contains the
leaf for Rιx

k for item x and if, for a new item
y, R

ιy
k = Rιx

k , then both items x and y will see
their leaf move to step k + 1 (where the two
new representatives Rιx

k+1 and R
ιy
k+1 would give

the coordinates of each respective leaf). At step
k now lies a new node with two children: the
leaf λx and the leaf λy.

Should another item z have Rιz
k = R

ιy
k = Rιx

k
at step k, either a third leaf (λz) would be added
in k + 1, or the leaf with similar path at k + 1
would become a new parent node and the two
leaves would move to k + 2. So on and so
forth...

2. Performance and Memory

To reduce the initial depth of the tree, one
may use a subset P ′ ⊂ P with the first prime
number in P ′ being greater than 2, eg. P ′ :=
[101, 103, 107, 109, . . .]. This would avoid some
expensive initial walkthroughs.

Besides, we can also use other tricks to im-
prove performance.

For example, as seen before, the modulo op-
eration is of complexity O(1) if the number is
of fixed size. However, we can optimize this
in two different ways since the operations of
multiplying and moving bits are much less
expensive in number of operations than the
operation of division:

• Method 1:

Pi ×
(

n−
⌊

n× 1
Pi

⌋)
(5)

• Method 2:
Pi × n� 32 (6)

For method 2, for a n of size less than 256
(8 bytes), we would need 16 bytes. So, the
trade-off is about speed vs memory.

Table 1 gives an example of method 2 for a
n of 4 bytes.

3



Treee • Fast Indexing Engine • Cyril Dever

Table 1: Memory management

Octet 1 2 3 4 5 6 7 8
n _ _ _ _ n n n n
n× Pi _ _ _ n× Pi � 32 n× Pi n× Pi n× Pi n× Pi

3. Usage

3.1 Write

To add an element to the tree:

• The new leaf is written in the index;
• We update the λNext field of the leaf that

previously corresponded to the last item
of the subchain;

• We modify the λPrev field of the leaf of the
origin item by writing the identifier of the
current item to the latter.

3.2 Read

To read/search an item in the index:

• We find in the tree the leaf corresponding
to the identifier of the searched item:

– If the λNext field of the leaf is empty,
this is the last item of the subchain;

– Otherwise, we go to the next step;

• We find the leaf corresponding to the iden-
tifier of the field λOrigin;

• We use the λPrev field of this leaf to find
the last item of the subchain.

When using the index, we can seen that we
would perform at most 3 reads or 3 writes plus
index runs of O(log(n)) order, where n is the
number of items in the index.

References

[1] Gauss. Disquisitiones Arithmeticae, trans-
lated by Arthur A. Clarke, Springer, 1986.

4


	Introduction
	Formal Description
	Acyclic graph
	Index
	Leaf is information on item

	Implementation
	Node creation
	Performance and Memory
	Usage
	Write
	Read



