Lecture 14: Distributed Word Representations for Information Retrieval

Section 9.2.2 Query Expansion: How can we robustly match a user’s search intent?

e Synonymy: In most collections, the same concept may be referred to using different words.
— Has an impact on the recall of most IR systems
— Users often attempt to manually refine their queries
— How could an IR system help with query refinement?
— We want to understand a query, rather than simply matching keywords. We want to better understand when query
and docouments match
e Query expansion: Users give additional input on query words or phrases, possibly suggesting additional query terms
— The users opting to use one of the alternative query suggestions
e How to generate alternative or expanded queries for the user?
— Global analysis: For each term in a query, automatically expand the query using synonyms and related words from
thesaurus
— Local analysis: Analyze the documents in the current results set
* Feedback on documents or on query terms
o How to build a theasaurus?
— Use of a controlled vocabulary maintained by human editors: Canonical terms for each concepts
— Manual theasarus: Synonymous names for concepts, without designating a canonical term.
— Automatically derived thesaurus
* Using word co-occurrence statistics: words co-occurring in a document or paragraph are likely to be in some sense
similar or related in meaning
* Exploiting grammatical relations or dependencies: less robust than co-occurrence statistics, but more accurate
x Quality of the resulting terms often not so good
* Since those terms are highly correlated in documents anyway, this method may not retrieve that many additional
documents.
— Query reformulations based on query log mining: Exploit the manual query reformulations of other users
e Use of query expansion generally increases recall
— A domain-specific thesaurus is required.
— May significantly decrease precision, particularly when the query contains ambiguous terms.

How can we represent term relations?

e Under the standard symbolic encoding of terms, different terms have no direct way of representing their similarities.
« Basic IR is scoring on ¢ d. Can we learn parameters W to rank via ¢Z Wd?
— Berger and Lafferty 1999, Query translation model
— W is huge (> 109): Sparsity is the problem
o We could learn a dense low-dimensional representation of a word in R?, such that dot products u”v express word similarity.
e Supervised Semantic Indexing shows successful use of learning W
e This lecture will however consider direct similarity
o Traditional way: Latent Semantic Indexing/Analysis - Use SVD; Results were somewhat iffy

Neural Embeddings

e Build a dense vector for each unique word, chosen so that it is good at predicting other words appearing in its context
e To do that, build a NN model that predict between a center word w; and its set of context words
— Directly learn low-dimensional word vectors, based on ability to predict
— Learned weights of this model would be the word embeddings
e Word2Vec:
— Two Algorithms (Word embedding models)
1. Skip-grams: Predict context words given target
2. Continuous Bag of Words: Predict target word from bag-of-words context
— Two(Three?) Training Methods
1. Hierarchical softmax
2. Negative sampling
3. Naive softmax
— Skip-grams overview
* For each position ¢ = 1,--- ,T', predict context words within a window of fixed size m, given center word w;.

* Likelihood: L(©) = HtT:1 I <im0 P(wes; | we)



* Objective is the average negative log likelihood: J(©) = —% log L(©) = —% Z?:l Z—mgjgm,j;ﬁo log P(wyyj | wy)
e These representations are very good at encoding similarity and dimensions of similarity.

Dual Embedding Space Model (DESM)

e Word2Vec CBOW models learn 2 different word embeddings
— One for target word (IN)
— One for context word (OUT)
e We usually retain just one of the two, depending on whether we use CBOW or SG.
e But interactions of two seperate embedding spaces capture additional distributional semantics of words. Let’s combine
the two
— The CBOW model pushes the IN vectors (representing context words for the missing target word) closer to the OUT
vector of other words that they commonly co-occur with.
— The IN-IN or OUT-OUT cosine similarities are higher for words that are similar in terms of type or funtion
— The IN-OUT (or very likely, OUT-IN) cosine similarities are higher for words that co-occur often in the training
corpus
e In the setting of ranked retrieval,
— Represent a document as a centroid of its word vectors in OUT space
— Represent each query term as a vector in IN space
— Then calculate the cosine similarities between the centroid and each term, and average them.
o This allows us to capture aboutness: words that appear with this word
e Using DESM solely to rank documents on the entire collection generates too many false positives
— Example: Given the query cambridge, the documents about oxford get high scores, because those documents would
have similar context words
o However, DESM is effective at finding subtler similarities/aboutness
— Allows ranking documents that is actually about the query terms higher, than the ones merely mentions the terms
— Example: Get the document about giraffe, and replace all occurrence of giraffe with cambridge — This document
still scores low
e Good results were shown when it was used as a re-ranking method for a smaller set of documents, given by other document
ranking features such as TF-IDF



	Lecture 14: Distributed Word Representations for Information Retrieval
	Section 9.2.2 Query Expansion: How can we robustly match a user's search intent?
	How can we represent term relations?
	Neural Embeddings
	Dual Embedding Space Model (DESM)


