
Lecture 15: Learning to Rank (with GBDTs)
Why Machine learned relevance?

• We used to rank with traditional ranking functions using a very small number of features; possible to tune weighting
coefficient by hand.

• But modern (web) systems use a great number of features.

Using classification for ad hoc IR
• Collect a training corpus of (q, d, r) triples

– r: relevance. binary
– q and d: query and document

∗ Represent the two with a feature vector (α, ω): α is cosine similarity, ω is minimum query window size (the
shortest text span that includes all query words)

• A linear score function is Score(d, q) = Score(α, ω) = aα+ bω + c.
• This problem setup could be extended to other linear classifiers.

An SVM classifier for information retrieval (Nallapati 2004)
• Features are not word presence features, but scores like the summed log tf of all query terms
• Unbalanced data is dealt with by undersampling nonrelevant documents during training
• Linear kernel normally best or almost as good as quadratic kernel
• At best the results are about equal to Lemur
• Paper claims that it’s easy to add more features (?)

Learning to rank?
• Rather than posing adhoc IR as a classification problem, let’s consider it instead as an ordinal regression problem.

– Classification: Mapping to an unordered set of classes
– Ordinal regression: Mapping to an ordered set of classes

• Advantages:
– Relations between relevance levels are modeled.
– Documents don’t possess some absolute scale of their goodness. Instead, their goodness are judged against other

documents in the collection (for a query.)
• Assume a number of categories C of relevance exist

– These are ordered: c1 < c2 < · · · < cj

• Assume training data is available consisting of
– Documents query pairs (d, q) represented as feature vectors xi

– Relevance ranking ci

1


	Lecture 15: Learning to Rank (with GBDTs)
	Why Machine learned relevance?
	Using classification for ad hoc IR
	An SVM classifier for information retrieval (Nallapati 2004)
	Learning to rank?


