Lecture 15: Learning to Rank (with GBDTs)

Why Machine learned relevance?

e We used to rank with traditional ranking functions using a very small number of features; possible to tune weighting
coefficient by hand.
o But modern (web) systems use a great number of features.

Using classification for ad hoc IR

o Collect a training corpus of (g, d,r) triples
— r: relevance. binary
— ¢ and d: query and document
* Represent the two with a feature vector (o,w): « is cosine similarity, w is minimum query window size (the
shortest text span that includes all query words)
A linear score function is Score(d, q) = Score(a,w) = aa + bw + ¢.
e This problem setup could be extended to other linear classifiers.

An SVM classifier for information retrieval (Nallapati 2004)

o Features are not word presence features, but scores like the summed log tf of all query terms
e Unbalanced data is dealt with by undersampling nonrelevant documents during training

e Linear kernel normally best or almost as good as quadratic kernel

e At best the results are about equal to Lemur

o Paper claims that it’s easy to add more features (?)

Learning to rank?

e Rather than posing adhoc IR as a classification problem, let’s consider it instead as an ordinal regression problem.
— Classification: Mapping to an unordered set of classes
— Ordinal regression: Mapping to an ordered set of classes
o Advantages:
— Relations between relevance levels are modeled.
— Documents don’t possess some absolute scale of their goodness. Instead, their goodness are judged against other
documents in the collection (for a query.)
e Assume a number of categories C of relevance exist
— These are ordered: ¢; < cy <--- < ¢
o Assume training data is available consisting of
— Documents query pairs (d, q) represented as feature vectors z;
— Relevance ranking c;



	Lecture 15: Learning to Rank (with GBDTs)
	Why Machine learned relevance?
	Using classification for ad hoc IR
	An SVM classifier for information retrieval (Nallapati 2004)
	Learning to rank?


