
Lecture 14: Distributed Word Representations for Information Retrieval
Section 9.2.2 Query Expansion: How can we robustly match a user’s search intent?

• Synonymy: In most collections, the same concept may be referred to using different words.
– Has an impact on the recall of most IR systems
– Users often attempt to manually refine their queries
– How could an IR system help with query refinement?
– We want to understand a query, rather than simply matching keywords. We want to better understand when query

and docouments match
• Query expansion: Users give additional input on query words or phrases, possibly suggesting additional query terms

– The users opting to use one of the alternative query suggestions
• How to generate alternative or expanded queries for the user?

– Global analysis: For each term in a query, automatically expand the query using synonyms and related words from
thesaurus

– Local analysis: Analyze the documents in the current results set
∗ Feedback on documents or on query terms

• How to build a theasaurus?
– Use of a controlled vocabulary maintained by human editors: Canonical terms for each concepts
– Manual theasarus: Synonymous names for concepts, without designating a canonical term.
– Automatically derived thesaurus

∗ Using word co-occurrence statistics: words co-occurring in a document or paragraph are likely to be in some sense
similar or related in meaning

∗ Exploiting grammatical relations or dependencies: less robust than co-occurrence statistics, but more accurate
∗ Quality of the resulting terms often not so good
∗ Since those terms are highly correlated in documents anyway, this method may not retrieve that many additional
documents.

– Query reformulations based on query log mining: Exploit the manual query reformulations of other users
• Use of query expansion generally increases recall

– A domain-specific thesaurus is required.
– May significantly decrease precision, particularly when the query contains ambiguous terms.

How can we represent term relations?
• Under the standard symbolic encoding of terms, different terms have no direct way of representing their similarities.
• Basic IR is scoring on qT d. Can we learn parameters W to rank via qT Wd?

– Berger and Lafferty 1999, Query translation model
– W is huge (> 1010): Sparsity is the problem

• We could learn a dense low-dimensional representation of a word in Rd, such that dot products uT v express word similarity.
• Supervised Semantic Indexing shows successful use of learning W
• This lecture will however consider direct similarity
• Traditional way: Latent Semantic Indexing/Analysis - Use SVD; Results were somewhat iffy

Neural Embeddings
• Build a dense vector for each unique word, chosen so that it is good at predicting other words appearing in its context
• To do that, build a NN model that predict between a center word wt and its set of context words

– Directly learn low-dimensional word vectors, based on ability to predict
– Learned weights of this model would be the word embeddings

• Word2Vec:
– Two Algorithms (Word embedding models)

1. Skip-grams: Predict context words given target
2. Continuous Bag of Words: Predict target word from bag-of-words context

– Two(Three?) Training Methods
1. Hierarchical softmax
2. Negative sampling
3. Naive softmax

– Skip-grams overview
∗ For each position t = 1, · · · , T , predict context words within a window of fixed size m, given center word wj .
∗ Likelihood: L(Θ) =

∏T
t=1

∏
−m≤j≤m,j 6=0 P (wt+j | wt)

1



∗ Objective is the average negative log likelihood: J(Θ) = − 1
T log L(Θ) = − 1

T

∑T
t=1

∑
−m≤j≤m,j 6=0 log P (wt+j | wt)

• These representations are very good at encoding similarity and dimensions of similarity.

Dual Embedding Space Model (DESM)
• Word2Vec CBOW models learn 2 different word embeddings

– One for target word (IN )
– One for context word (OUT )

• We usually retain just one of the two, depending on whether we use CBOW or SG.
• But interactions of two seperate embedding spaces capture additional distributional semantics of words. Let’s combine

the two
– The CBOW model pushes the IN vectors (representing context words for the missing target word) closer to the OUT

vector of other words that they commonly co-occur with.
– The IN-IN or OUT-OUT cosine similarities are higher for words that are similar in terms of type or funtion
– The IN-OUT (or very likely, OUT-IN) cosine similarities are higher for words that co-occur often in the training
corpus

• In the setting of ranked retrieval,
– Represent a document as a centroid of its word vectors in OUT space
– Represent each query term as a vector in IN space
– Then calculate the cosine similarities between the centroid and each term, and average them.

• This allows us to capture aboutness: words that appear with this word
• Using DESM solely to rank documents on the entire collection generates too many false positives

– Example: Given the query cambridge, the documents about oxford get high scores, because those documents would
have similar context words

• However, DESM is effective at finding subtler similarities/aboutness
– Allows ranking documents that is actually about the query terms higher, than the ones merely mentions the terms
– Example: Get the document about giraffe, and replace all occurrence of giraffe with cambridge → This document

still scores low
• Good results were shown when it was used as a re-ranking method for a smaller set of documents, given by other document

ranking features such as TF-IDF

2


	Lecture 14: Distributed Word Representations for Information Retrieval
	Section 9.2.2 Query Expansion: How can we robustly match a user's search intent?
	How can we represent term relations?
	Neural Embeddings
	Dual Embedding Space Model (DESM)


